Skip to main content
Log in

Effect of the antidepressant nefazodone on the density of cells expressing mu-opioid receptors in discrete brain areas processing sensory and affective dimensions of pain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The principal use of antidepressants is in the treatment of depression and affective disorders. Antidepressants have also been used as an adjuvant to analgesics in pain treatment. However, in chronic treatment, their antinociceptive and antidepressive effects coexist simultaneously. Antidepressants can interact with the opioid system, which is also involved in regulating nociceptive processing and affective state. Chronic antidepressants could act by increasing mu-opioid receptor expression in many brain areas involved in the regulation of nociception and affective state.

Objectives

The aim of this study was to evaluate the antinociceptive and antidepressant-like effects and the possible variations in mu-opioid receptor expression induced by a chronic nefazodone treatment in brain areas related to pain and affective state.

Methods

Wistar rats were chronically treated with nefazodone (10 and 25 mg/kg IP, twice a day, for 14 days). Twelve hours after the last day 14 dose of nefazodone, a tail-flick test was performed. After the administration of a daily dose of nefazodone, Porsolt’s test was carried out 12 h after last dose. Two hours after completion of 14 days treatment, other animals were processed for mu-opioid receptor immunocytochemistry using polyclonal antisera raised in rabbits. Several brain regions were analyzed: the frontal and cingulate cortex, the dorsal raphe nucleus and the periaqueductal gray.

Results

Chronic nefazodone treatment induced a significant increase in tail-flick latency and a significant decrease in immobility time at total doses of 20 and 50 mg/kg per day (P<0.05). In treated animals, the density of neural cells immunostained for mu-opioid receptor in the frontal and cingulate cortices, dorsal raphe nucleus and periaqueductal gray had increased after chronic nefazodone compared to controls.

Conclusion

Therefore, chronic nefazodone induces antinociceptive and antidepressant-like effects in rats and increases mu-opioid receptor expression in brain areas related to pain and affective state. These results suggest that antidepressants could be effective on somatic and affective dimensions of pain and this action could be related to its influence on the opioid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antkiewicz-Michaluk L, Rokosz-Pelc A, Vetulani J (1984) Increase in rat cortical [3H]naloxone binding site density after chronic administration of antidepressant agents. Eur J Pharmacol 102:179–181

    Article  CAS  PubMed  Google Scholar 

  • Ardid D, Guilbaud G (1992) Antinociceptive effects of acute and “chronic” injections of tricyclic antidepressant drugs in a new model of mononeuropathy in rats. Pain 49:279–287

    Article  CAS  PubMed  Google Scholar 

  • Belluzzi JD, Stein L (1977) Enkephaline may mediate euphoria and drive-reduction reward. Nature 266:556–558

    CAS  PubMed  Google Scholar 

  • Bendtsen L, Jensen R (2000) Amitriptyline reduces myofascial tenderness in patients with chronic tension-type headache. Cephalalgia 20:603–610

    Article  CAS  PubMed  Google Scholar 

  • Besson A, Privat AM, Eschalier A, Fialip J (1996) Effects of morphine, naloxone and their interaction in the learned-helplessness paradigm in rats. Psychopharmacology 123:71–78

    Google Scholar 

  • Bonhomme N, Esposito E (1998) Involvement of serotonin and dopamine in the mechanism of action of novel antidepressant drugs: a review. J Clin Psychopharmacol 18:447–454

    Article  CAS  PubMed  Google Scholar 

  • Cabib S, Zocchi A, Puglisi-Allegra S (1995) A comparison of the behavioral effects of minaprine, amphetamine and stress. Psychopharmacology 121:73–80

    CAS  PubMed  Google Scholar 

  • Carter GT, Sullivan MD (2002) Antidepressants in pain management. Curr Opin Invest Drugs 3:54–58

    PubMed  Google Scholar 

  • D’Amour FE, Smith DL (1941) A method for determine loss of pain sensation. J Pharmacol Exp Ther 72:74–77

    Google Scholar 

  • De Felipe MC, De Ceballos ML, Gil C, Fuentes JA (1985) Chronic antidepressant treatment increases enkephalin levels in n. accumbens and striatum of the rat. Eur J Pharmacol 112:119–122

    Article  PubMed  Google Scholar 

  • de Gandarias JM, Echevarria E, Acebes I, Silio M, Casis L (1998) Effects of imipramine administration on mu-opioid receptor immunostaining in the rat forebrain. Arzneimittelforschung 48:717–719

    Google Scholar 

  • de Gandarias JM, Echevarria E, Acebes I, Abecia LC, Casis O, Casis L (1999) Effects of fluoxetine administration on mu-opoid receptor immunostaining in the rat forebrain. Brain Res 817:236–240

    Article  PubMed  Google Scholar 

  • Ding YQ, Kaneko T, Nomura S, Mizuno N (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol 367:375–402

    Article  CAS  PubMed  Google Scholar 

  • Dirksen R, Van Luijtelaar EL, Van Rijn CM (1998) Selective serotonin reuptake inhibitors may enhance responses to noxious stimulation. Pharmacol Biochem Behav 60:719–725

    Article  CAS  PubMed  Google Scholar 

  • Duncan GE, Knapp DJ, Carson SW, Breese GR (1998) Differential effects of chronic antidepressant treatment on swim stress- and fluoxetine-induced secretion of corticosterone and progesterone. J Pharmacol Exp Ther 285:579–587

    CAS  PubMed  Google Scholar 

  • Esser MJ, Chase T, Allen GV, Sawynok J (2001) Chronic administration of amitriptyline and caffeine in a rat model of neuropathic pain: multiple interactions. Eur J Pharmacol 430:211–218

    Article  CAS  PubMed  Google Scholar 

  • Gioannini TL, Yao YH, Hiller JM, Taylor LP, Simon EJ (1993) Antisera against peptides derived from a purified mu-opioid binding protein recognize the protein as well as mu-opioid receptors in brain regions and a cell line. Mol Pharmacol 44:796–801

    CAS  PubMed  Google Scholar 

  • Goldstein FJ (2002) Adjuncts to opioid therapy. J Am Osteopath Assoc 102:S15–S21

    PubMed  Google Scholar 

  • Hamon M, Gozlan H, Bourgoin S, Benoliel JJ, Mauborgne A, Taquet H, Cesselin F, Mico JA (1987) Opioid receptors and neuropeptides in the CNS in rats treated chronically with amoxapine or amitriptyline. Neuropharmacology 26:531–539

    Article  CAS  PubMed  Google Scholar 

  • Harro J, Lofberg C, Pahkla R, Matto V, Rago L, Oreland L, Allikmets L (1997) Different molecular forms of cholecystokinin and CCKB receptor binding in the rat brain after chronic antidepressant treatment. Naunyn Schmiedeberg’s Arch Pharmacol 355:57–63

    CAS  PubMed  Google Scholar 

  • Harvey BH, Jonker LP, Brand L, Heenop M, Stein DJ (2002) NMDA receptor involvement in imipramine withdrawal-associated effects on swim stress, GABA levels and NMDA receptor binding in rat hippocampus. Life Sci 71:43–54

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Minami M, Satoh M, Mizuno N (1995) Immunocytochemical localization of mu-opioid receptor in the rat caudate-putamen. Neurosci Lett 184:149–152

    Article  CAS  PubMed  Google Scholar 

  • Kita A, Imano K, Seto Y, Yakuo I, Deguchi T, Nakamura H (1997) Antinociceptive and antidepressant-like profiles of BL-2401, a novel enkephalinase inhibitor, in mice and rats. Jpn J Pharmacol 75:337–346

    CAS  PubMed  Google Scholar 

  • Kurumaji A, Mitsushio H, Takashima M (1988) Chronic dietary treatment with antidepressants decrease brain Met-enkephalin-like immunoreactivity in the rat. Psychopharmacology 94:188–192

    CAS  PubMed  Google Scholar 

  • Lang E, Hord AH, Denson D (1996) Venlafaxine hydrochloride (Effexor) relieves thermal hyperalgesia in rats with an experimental mononeuropathy. Pain 68:151–155

    Article  CAS  PubMed  Google Scholar 

  • Maneckjee R, Archer S, Zukin RS (1988) Characterization of a polyclonal antibody to the mu opioid receptor. J Neuroimmunol 17:199–208

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Alvaro A, Gibert-Rahola J, Chover AJ, Tejedor-Real P, Casas J, Mico JA (1994) Effect of amitriptyline on the analgesia induced by adrenal medullary tissue transplanted in the rat spinal subarachnoid space as measured by an experimental model of acute pain. Exp Neurol 130:9–14

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Alvaro A, Gibert-Rahola J, Mellado-Fernandez ML, Chover AJ, Mico JA (1997) The effects of different monoaminergic antidepressants on the analgesia induced by spinal cord adrenal medullary transplants in the formalin test in rats. Anesth Analg 84:816–820

    CAS  PubMed  Google Scholar 

  • Pernia A, Mico JA, Calderon E, Torres LM (2000) Venlafaxine for the treatment of neuropathic pain. J Pain Symptom Manage 19:408–410

    Article  CAS  PubMed  Google Scholar 

  • Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia—imaging a shared neuronal network. Science 295:1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Pick CG, Paul D, Eison MS, Pasternak GW (1992) Potentiation of opioid analgesia by the antidepressant nefazodone. Eur J Pharmacol 211:375–381

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    CAS  PubMed  Google Scholar 

  • Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288:1769–1772

    Article  CAS  PubMed  Google Scholar 

  • Reisine T, Soubrie P (1982) Loss of rat cerebral cortical opiate receptors following chronic desimipramine treatment. Eur J Pharmacol 77:39–44

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Corrales MO, Gibert-Rahola J, Mico JA (1998) Tramadol induces antidepressant-type effects in mice. Life Sci 63:PL175–PL180

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Corrales MO, Berrocoso E, Gibert-Rahola J, Mico JA (2002) Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. Life Sci 72:143–152

    Article  CAS  PubMed  Google Scholar 

  • Rosso T, Aglioti SM, Zanette G, Ischia S, Finco G, Farina S, Fiaschi A, Tinazzi M (2003) Functional plasticity in the human primary somatosensory cortex following acute lesion of the anterior lateral spinal cord: neurophysiological evidence of short-term cross-modal plasticity. Pain 101:117–127

    Article  PubMed  Google Scholar 

  • Saper JR, Lake AE, Tepper SJ (2001) Nefazodone for chronic daily headache prophylaxis: an open-label study. Headache 41:465–474

    Article  CAS  PubMed  Google Scholar 

  • Schreiber S, Vinokur S, Shavelzon V, Pick CG, Zahavi E, Shir Y (2001) A randomized trial of fluoxetine versus amitriptyline in musculo-skeletal pain. Isr J Psychiatr Relat Sci 38:88–94

    CAS  PubMed  Google Scholar 

  • Sewards TV, Sewards MA (2002) The medial pain system: neural representations of the motivational aspect of pain. Brain Res Bull 59:163–180

    Article  PubMed  Google Scholar 

  • Sindrup SH (1997) Antidepressants as analgesics. In: Yaksh TL, Lynch C, Zapol WM, Maze M, Biebuyck JF (eds) Anesthesia: biologic foundations. Lippincott-Raven, Philadelphia, p 987

  • Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Jain NK, Kulkarni SK (2001) On the antinociceptive effect of fluoxetine, a selective serotonin reuptake inhibitor. Brain Res 915:218–226

    Article  CAS  PubMed  Google Scholar 

  • Sorkin LS, McAdoo DJ, Willis WD (1993) Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res 618:95–108

    Article  CAS  PubMed  Google Scholar 

  • Stengaard-Pedersen K, Schou M (1986) Opioid receptors in the brain of the rat following chronic treatment with desipramine and electroconvulsive shock. Neuropharmacology 25:1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Stucky CL, Gold MS, Zhang X (2001) Mechanisms of pain. Proc Natl Acad Sci USA 98:11845–11846

    Article  CAS  PubMed  Google Scholar 

  • Tejedor-Real P, Mico JA, Maldonado R, Roques BP, Gibert-Rahola J (1995) Implication of endogenous opioid system in the learned helplessness model of depression. Pharmacol Biochem Behav 52:145–152

    PubMed  Google Scholar 

  • Vilpoux C, Carpentier C, Leroux-Nicollet I, Naudon L, Costentin J (2002) Differential effects of chronic antidepressant treatments on micro- and delta-opioid receptors in rat brain. Eur J Pharmacol 443:85–93

    Article  CAS  PubMed  Google Scholar 

  • Wang QP, Nakai Y (1994) The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull 34:575–585

    Article  CAS  PubMed  Google Scholar 

  • Yokogawa F, Kiuchi Y, Ishikawa Y, Otsuka N, Masuda Y, Oguchi K, Hosoyamada A (2002) An investigation of monoamine receptors involved in antinociceptive effects of antidepressants. Anesth Analg 95:163–168

    CAS  PubMed  Google Scholar 

  • Zarrindast MR, Sahebgharani M (2002) Effect of alpha-adrenoceptor agonists and antagonists on imipramine-induced antinociception in the rat formalin test. Pharmacology 64:201–207

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Health (FIS 01/1055, FIS PI031430), “Plan Andaluz de Investigación (CTS-510),” the Basque Government (GV PI-1999-51) and the University of the Basque Country (UPV 081.123-EA094/99). We would like to thank J.M. Rodríguez Robledo for his technical assistance. All animal use procedures conformed to international European ethical standards (86/609-EEC) and Spanish law (RD 223/1988) for the care and use of laboratory animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Micó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega-Alvaro, A., Acebes, I., Saracíbar, G. et al. Effect of the antidepressant nefazodone on the density of cells expressing mu-opioid receptors in discrete brain areas processing sensory and affective dimensions of pain. Psychopharmacology 176, 305–311 (2004). https://doi.org/10.1007/s00213-004-1894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1894-7

Keywords

Navigation