Skip to main content

Advertisement

Log in

Relationship of serum prolactin with severity of drug use and treatment outcome in cocaine dependence

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Alteration in serum prolactin (PRL) levels may reflect changes in central dopamine activity, which modulates the behavioral effects of cocaine. Therefore, serum PRL may have a potential role as a biological marker of drug severity and treatment outcome in cocaine dependence.

Objective

We investigated whether serum PRL levels differed between cocaine-dependent (CD) subjects and controls, and whether PRL levels were associated with severity of drug use and treatment outcome in CD subjects.

Methods

Basal PRL concentrations were assayed in 141 African–American (AA) CD patients attending an outpatient treatment program and 60 AA controls. Severity of drug use was assessed using the Addiction Severity Index (ASI). Measures of abstinence and retention during 12 weeks of treatment and at 6-month follow-up were employed as outcome variables.

Results

The basal PRL (ng/ml) in CD patients (9.28±4.13) was significantly higher than controls (7.33±2.94) (t=3.77, P<0.01). At baseline, PRL was positively correlated with ASI-drug (r=0.38, P<0.01), ASI-alcohol (r=0.19, P<0.05), and ASI-psychological (r=0.25, P<0.01) composite scores, and with the quantity of cocaine use (r=0.18, P<0.05). However, PRL levels were not significantly associated with number of negative urine screens, days in treatment, number of sessions attended, dropout rate or changes in ASI scores during treatment and at follow-up. Also, basal PRL did not significantly contribute toward the variance in predicting any of the outcome measures.

Conclusion

Although cocaine use seems to influence PRL levels, it does not appear that PRL is a predictor of treatment outcome in cocaine dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorder, 4th edn. American Psychiatric Association, Washington D.C.

  • Appleberg B, Katila H, Rimon R (2000) Inverse correlation between hallucinations and serum prolactin in patients with non-affective psychoses. Schizophr Res 44:183–186

    Article  CAS  PubMed  Google Scholar 

  • Basturk M, Karaaslan F, Esel E, Sofuoglu S, Tutus A, Yabanoglu I (2001) Effects of short and long-term lithium treatment on serum prolactin levels in patients with bipolar affective disorder. Prog Neuropsychopharmacol Biol Psychiatry 25:315–322

    CAS  PubMed  Google Scholar 

  • Baumann MH, Rothman RB (1993) Effects of acute and chronic cocaine on the activity of the tuberoinfundibular dopamine neurons in the rat. Brain Res 608:175–179

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Gendron TM, Becketts KM, Henningfield JE, Gorelick DA, Rothman RB (1995) Effects of intravenous cocaine on plasma cortisol and PRL in human cocaine abusers. Biol Psychiatry 38:751–755

    CAS  PubMed  Google Scholar 

  • Beck AT, Steer RA (1987) Beck depression inventory. The Psychological Corporation, Harcourt, Brace, Tex.

  • Carroll FL, Lewin AH, Boja JW, Kuhar MJ (1992) Cocaine receptor: biochemical characterization and structure activity relationships of cocaine analogues at the dopamine transporter. J Med Chem 35:969–981

    CAS  PubMed  Google Scholar 

  • Chakravarty I, Sreedhar R, Ghosh KK, Card D, Bulusu S (1982) Circulating gonadotropin profile in severe cases of protein calorie malnutrition. Fertil Steril 37:650–654

    CAS  PubMed  Google Scholar 

  • Cocores JA, Dackis CA, Gold MS (1986) Sexual dysfunction secondary to cocaine abuse in two patients. J Clin Psychol 47:384–385

    CAS  Google Scholar 

  • Dackis CA, Gold MS (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 9:469–477

    CAS  PubMed  Google Scholar 

  • Eiler K, Schaefer MR, Salstrom D, Lowery R (1995) Double-blind comparison of bromocriptine and placebo in cocaine withdrawal. Am J Drug Alcohol Abuse 21:65–79

    CAS  PubMed  Google Scholar 

  • Fagerstrom KO, Schneider NF (1989) Measuring nicotine dependence: a review of the Fagerstrom Tolerance Questionnaire. J Behav Med 12:159–182

    CAS  PubMed  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (1997) Structured clinical interview for DSM-IV disorders (SCID-IV). American Psychiatric Association, Washington D.C.

  • Fishbein DH, Lozovosky D, Jaffe JH (1989) Impulsivity, aggression, and neuroendocrine responses to serotonergic stimulation in substance abusers. Biol Psychiatry 25:1049–1066

    Article  CAS  PubMed  Google Scholar 

  • Gawin FH, Kleber HD (1985) Neuroendocrine findings in chronic cocaine abusers: a preliminary report. Br J Psychiatry 147:569–573

    CAS  PubMed  Google Scholar 

  • Heatherton TK, Kozlowski LT, Frecker RC (1991) The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–1127

    CAS  PubMed  Google Scholar 

  • Joyce PR, Fergusson DM, Woollard G, Abbott RM, Horwood LJ, Upton J (1995) Urinary catecholamines and plasma hormones predict mood state in rapid cycling bipolar affective disorder. J Affect Disord 33:233–243

    Article  CAS  PubMed  Google Scholar 

  • Komorowski J, Jankiewicz-Wilka J, Stepien H (2000) Effects of Gn-RH, TRH, and CRF administration on plasma leptin levels in lean and obese women. Neuropeptides 34:89–97

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Caine B, Markou A, Pulvirenti L, Weiss F (1994) Role for the mesocortical dopamine system in the motivating effects of cocaine. NIDA Res Monogr 145:1–18

    CAS  PubMed  Google Scholar 

  • Kosten TR, Morgan CM, Falcione J, Scottenfeld RS (1992) Pharmacotherapy for cocaine-abusing methadone-maintained patients using amantidine or desipramine. Arch Gen Psychiatry 49:894–898

    CAS  PubMed  Google Scholar 

  • Kranzler HR, Wallington DJ (1992) Serum PRL level, craving, and early discharge from treatment in cocaine-dependent patients. Am J Drug Alcohol Abuse 18:187–195

    CAS  PubMed  Google Scholar 

  • Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14:299–302

    CAS  PubMed  Google Scholar 

  • Levy AD, Baumann MH, Van de Kar LD (1994) Monoaminergic regulation of neuroendocrine function and its modification by cocaine. Front Neuroendocrinol 15:85–166

    Article  CAS  PubMed  Google Scholar 

  • Martin JB, Reichlin S, Brown GM (1987) Regulation of PRL secretion and its disorders. In: Martin JB, Reichlin S (eds) Clinical neuroendocrinology. FA Davis, Philadelphia, pp 201–220

  • McDougle CJ, Price LH, Palumbo JM, Kosten TR, Henniger GR, Kleber HD (1992) Dopaminergic responsivity during cocaine abstinence: a pilot study. Psychiatry Res 43:77–85

    Article  CAS  PubMed  Google Scholar 

  • McLellan AT, Luborsky L, Cacciola J, Griffith J, Evans F, Barr HL, O’Brien CP (1985) New data from the Addiction Severity Index: reliability and validity in three centers. J Nerv Ment Dis 173:412–423

    CAS  PubMed  Google Scholar 

  • McLellan AT, Luborsky L, Cacciola J, Kushner H, Peters L, Smith I, Pettinati H (1992) The fifth edition of the Addiction Severity Index: cautions, additions and normative data. J Nerv Ment Dis 168:26–33

    Google Scholar 

  • Mello NK, Mendelson JH (1997) Cocaine’s effects on neuroendocrine systems: clinical and preclinical studies. Pharmacol Biochem Behav 57:571–599

    CAS  PubMed  Google Scholar 

  • Mendelson JH, Siew KT, Lange U, Mello NK, Weiss R, Skupny A, Ellingboe J (1988) Anterior pituitary, adrenal, and gonadal hormones during cocaine withdrawal. Am J Psychiatry 145:1094–1098

    CAS  PubMed  Google Scholar 

  • Miles LE, Lipschitz DA, Bieber CP, Cook JD (1974) Measurement of serum ferritin by a two-site immunoradiometric assay. Ann Biochem 61:209

    CAS  Google Scholar 

  • Miller NS, Summers GL, Gold MS (1993) Cocaine dependence: alcohol and other drug dependence and withdrawal characteristics. J Addict Dis 12:25–35

    CAS  PubMed  Google Scholar 

  • Neill JD, Frawley LS, Plotsky PM, Tindall GI (1981) Dopamine in hypophysial stalk blood of the rhesus monkey and its role in regulating PRL secretion. Endocrinology 108:489–494

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10:201–217

    Article  CAS  PubMed  Google Scholar 

  • Nestler JF, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    CAS  PubMed  Google Scholar 

  • Patkar AA, Hill KP, Sterling RC, Gottheil E, Berrettini WH, Weinstein SP (2002) Serum prolactin and response to treatment among cocaine-dependent individuals. Addict Biol 7:45–53

    Article  CAS  PubMed  Google Scholar 

  • Satel SL, Price LH, Palumbo JM, McDougle CJ, Krystal JH, Gawin F, Charney DS, Heninger GR, Kleber HD (1991) Clinical phenomenology and neurobiology of cocaine abstinence: a prospective inpatient study. Am J Psychiatry 148:1712–1716

    CAS  PubMed  Google Scholar 

  • Swartz CM, Breen K, Leone F (1990) Serum PRL levels during extended cocaine abstinence. Am J Psychiatry 147:777–779

    CAS  PubMed  Google Scholar 

  • Teller DW, Devenyi P (1988) Bromocriptine in cocaine withdrawal—does it work? Int J Addict 23:1197–1205

    CAS  PubMed  Google Scholar 

  • Teoh SK, Mendelson JH, Mello NK, Weiss R, McElroy S, McAfee B (1990) Hyperprolactinemia and risk for relapse of cocaine abuse. Biol Psychiatry 28:824–828

    Article  CAS  PubMed  Google Scholar 

  • Tuomisto J, Mannisto P (1985) Neurotransmitter regulation of anterior pituitary hormones. Pharmacol Rev 37:249–332

    CAS  PubMed  Google Scholar 

  • Weiss RD, Markou A, Lorang MT, Koob G (1992) Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited access self-administration. Brain Res 593:314–318

    CAS  PubMed  Google Scholar 

  • Weiss RD, Hufford C, Mendelson JH (1994) Serum PRL levels and treatment outcome in cocaine dependence. Biol Psychiatry 35:573–574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants DA00340 and DA 015504 (A.A.P.) and DA11835 and DA14008 (W.H.B.) from the National Institute on Drug Abuse. The authors thank Cheryl Marshall for technical assistance and Stephen P. Weinstein for recruitment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin A. Patkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patkar, A.A., Mannelli, P., Certa, K.M. et al. Relationship of serum prolactin with severity of drug use and treatment outcome in cocaine dependence. Psychopharmacology 176, 74–81 (2004). https://doi.org/10.1007/s00213-004-1856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1856-0

Keywords

Navigation