Neurotensin agonists block the prepulse inhibition deficits produced by a 5-HT2A and an α1 agonist

Abstract

Rationale

Neurotensin (NT) agonists have been proposed as potential antipsychotics based exclusively upon their ability to inhibit dopamine-2 (D2) receptor transmission. Several other pharmacological mechanisms have been implicated in enhancing the antipsychotic profile produced by D2 inhibition alone. These include inhibition of 5-HT2A and α1-adrenoceptors. Recently, we reported that systemic administration of the neurotensin agonist PD149163 blocks deficits in prepulse inhibition (PPI) of the startle reflex produced by the 5-HT2A receptor agonist DOI. This suggested that NT agonists could inhibit 5-HT2A modulation of neurotransmission.

Objective

To determine if other peripherally administered NT agonists shared this effect, we examined the effects of NT69L, another NT agonist, on DOI-induced PPI deficits. In addition, to determine if NT agonists also inhibit α1-adrenoceptor neurotransmission, we examined the effects of PD149163 and NT69L on PPI deficits induced by the α1-adrenoceptor agonist, cirazoline.

Methods

In the NT69L/DOI study, rats received subcutaneous (SC) injections of NT69L (0, 0.1, 1, or 2 mg/kg) followed 30 min later by SC saline or DOI (0.5 mg/kg). In the NT agonist/cirazoline studies, animals received SC injections of either PD149163 (0, 0.01, 0.1, or 1 mg/kg) or NT69L (0, 0.01, 0.1, or 1 mg/kg) followed 30 min later by SC saline or cirazoline (0.7 mg/kg). Animals were tested in startle chambers 20 min later.

Results

In all three experiments the PPI disruption produced by DOI and cirazoline was blocked by the NT agonists.

Conclusions

These findings provide strong evidence that NT agonists inhibit 5-HT2A and α1-adrenoceptor modulation of neurotransmission, pharmacological effects that, in conjunction with their known inhibition of dopamine transmission, strengthen the antipsychotic potential of NT agonists.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alexander MJ, Leeman SE (1998) Widespread expression in adult rat forebrain of mRNA encoding high-affinity neurotensin receptor. J Comp Neurol 402:475–500

    Article  CAS  PubMed  Google Scholar 

  2. Allen GV, Cechetto DF (1995) Neurotensin in the lateral hypothalamic area: origin and function. Neuroscience 69:533–544

    Article  CAS  PubMed  Google Scholar 

  3. Binder EB, Kinkead B, Owens MJ, Nemeroff CB (2001) The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol Psychiatry 50:856–872

    Article  CAS  PubMed  Google Scholar 

  4. Boudin H, Pelaprat D, Rostene W, Beaudet A (1996) Cellular distribution of neurotensin receptors in rat brain: immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor. J Comp Neurol 373:76–89

    CAS  PubMed  Google Scholar 

  5. Boules M, Cusack B, Zhao L, Fauq A, McCormick DJ, Richelson E (2000) A novel neurotensin peptide analog given extracranially decreases food intake and weight in rodents. Brain Res 865:35–44

    Article  CAS  PubMed  Google Scholar 

  6. Boules M, Warrington L, Fauq A, McCormick D, Richelson E (2001) A novel neurotensin analog blocks cocaine- and d-amphetamine-induced hyperactivity. Eur J Pharmacol 426:73–76

    Article  CAS  PubMed  Google Scholar 

  7. Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188

    CAS  PubMed  Google Scholar 

  8. Burns MJ (2001) The pharmacology and toxicology of atypical antipsychotic agents. J Toxicol Clin Toxicol 39:1–14

    CAS  PubMed  Google Scholar 

  9. Carasso BS, Bakshi VP, Geyer MA (1998) Disruption in prepulse inhibition after alpha-1 adrenoceptor stimulation in rats. Neuropharmacology 37:401–404

    Article  CAS  PubMed  Google Scholar 

  10. Cooper J, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology, 7th edn. Oxford University Press, Oxford

  11. Cusack B, Boules M, Tyler BM, Fauq A, McCormick DJ, Richelson E (2000) Effects of a novel neurotensin peptide analog given extracranially on CNS behaviors mediated by apomorphine and haloperidol. Brain Res 856:48–54

    Article  CAS  PubMed  Google Scholar 

  12. Emson PC, Goedert M, Horsfield P, Rioux F, St Pierre S (1982) The regional distribution and chromatographic characterisation of neurotensin-like immunoreactivity in the rat central nervous system. J Neurochem 38:992–999

    CAS  PubMed  Google Scholar 

  13. Ereshefsky L (1999) Pharmacologic and pharmacokinetic considerations in choosing an antipsychotic. J Clin Psychiatry 60(Suppl 10):20–30

    CAS  Google Scholar 

  14. Feifel D, Minor KL, Dulawa S, Swerdlow NR (1997) The effects of intra-accumbens neurotensin on sensorimotor gating. Brain Res 760:80–84

    CAS  PubMed  Google Scholar 

  15. Feifel D, Reza TL, Wustrow DJ, Davis MD (1999) Novel antipsychotic-like effects on prepulse inhibition of startle produced by a neurotensin agonist. J Pharmacol Exp Ther 288:710–713

    CAS  PubMed  Google Scholar 

  16. Feifel D, Melendez G, Shilling PD (2003) A systemically administered neurotensin agonist blocks disruption of prepulse inhibition produced by a serotonin-2a agonist. Neuropsychopharmacology 28:651–653

    Article  CAS  PubMed  Google Scholar 

  17. Feifel D, Melendez G, Shilling PD (2004) Reversal of sensorimotor gating deficits in Brattleboro rats by acute administration of clozapine and a neurotensin agonist, but not haloperidol: a potential predictive model for novel antipsychotic effects. Neuropsychopharmacology 29:731–738

    Article  CAS  PubMed  Google Scholar 

  18. Gerlach J (1991) New antipsychotics: classification, efficacy, and adverse effects. Schizophr Bull 17:289–309

    CAS  PubMed  Google Scholar 

  19. Gerlach J, Peacock L (1995) New antipsychotics: the present status. Int Clin Psychopharmacol 10(Suppl 3):39–48

    Google Scholar 

  20. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    CAS  PubMed  Google Scholar 

  21. Hertel P, Byskov L, Didriksen M, Arnt J (2001) Induction of tolerance to the suppressant effect of the neurotensin analogue NT69L on amphetamine-induced hyperactivity. Eur J Pharmacol 422:77–81

    Article  CAS  PubMed  Google Scholar 

  22. Hommer DW, Zahn TP, Pickar D, van Kammen DP (1984) Prazosin, a specific alpha 1-noradrenergic receptor antagonist, has no effect on symptoms but increases autonomic arousal in schizophrenic patients. Psychiatry Res 11:193–204

    Google Scholar 

  23. Jolas T, Aghajanian GK (1996) Neurotensin excitation of serotonergic neurons in the dorsal raphe nucleus of the rat in vitro. Eur J Neurosci 8:153–161

    CAS  PubMed  Google Scholar 

  24. Jolas T, Aghajanian GK (1997) Neurotensin and the serotonergic system. Prog Neurobiol 52:455–468

    Article  CAS  PubMed  Google Scholar 

  25. Kalivas PW, Nemeroff CB, Prange AJ Jr (1984) Neurotensin microinjection into the nucleus accumbens antagonizes dopamine-induced increase in locomotion and rearing. Neuroscience 11:919–930

    CAS  PubMed  Google Scholar 

  26. Kinkead B, Nemeroff CB (2002) Neurotensin: an endogenous antipsychotic? Curr Opin Pharmacol 2:99–103

    Article  CAS  PubMed  Google Scholar 

  27. Mai JK, Triepel J, Metz J (1987) Neurotensin in the human brain. Neuroscience 22:499–524

    Article  CAS  PubMed  Google Scholar 

  28. Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology 94:507–514

    CAS  PubMed  Google Scholar 

  29. Marwaha J, Hoffer BJ, Geller HM, Freedman R (1981) Electrophysiologic interactions of antipsychotic drugs with central noradrenergic pathways. Psychopharmacology 73:126–133

    CAS  PubMed  Google Scholar 

  30. Meltzer HY (2002) Mechanism of action of atypical antipsychotic drugs. In: Davis KLC, Joseph Coyle D, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. American College of Neuropsychopharmacology

  31. Morilak DA, Garlow SJ, Ciaranello RD (1993) Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience 54:701–717

    Article  CAS  PubMed  Google Scholar 

  32. Nemeroff CB, Luttinger D, Hernandez DE, Mailman RB, Mason GA, Davis SD, Widerlov E, Frye GD, Kilts CA, Beaumont K, Breese GR, Prange AJ Jr (1983) Interactions of neurotensin with brain dopamine systems: biochemical and behavioral studies. J Pharmacol Exp Ther 225:337–345

    CAS  PubMed  Google Scholar 

  33. Nemeroff CB, Levant B, Myers B, Bissette G (1992) Neurotensin, antipsychotic drugs, and schizophrenia. Basic and clinical studies. Ann N Y Acad Sci 668:146–156

    CAS  PubMed  Google Scholar 

  34. Shilling PD, Richelson E, Feifel D (2003) The effects of systemic NT69L, a neurotensin agonist, on baseline and drug-disrupted prepulse inhibition. Behav Brain Res 143:7–14

    Article  CAS  PubMed  Google Scholar 

  35. Sipes TA, Geyer MA (1994) Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology 33:441–448

    Google Scholar 

  36. Sipes TE, Geyer MA (1995) DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT(2A) and not by 5-HT(2C) receptors. Behav Pharmacol 6:839–842

    CAS  PubMed  Google Scholar 

  37. Sipes TE, Geyer MA (1997) DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum. Brain Res 761:97–104

    CAS  PubMed  Google Scholar 

  38. Tohyama M, Takatsuji M (1998) Atlas of neuroactive substances and their receptors in rat. Oxford University Press, Oxford

  39. Tyler-McMahon BM, Stewart JA, Farinas F, McCormick DJ, Richelson E (2000) Highly potent neurotensin analog that causes hypothermia and antinociception. Eur J Pharmacol 390:107–111

    Article  CAS  PubMed  Google Scholar 

  40. Varty GB, Higgins GA (1995a) Examination of drug-induced and isolation-induced disruptions of prepulse inhibition as models to screen antipsychotic drugs. Psychopharmacology 122:15–26

    CAS  PubMed  Google Scholar 

  41. Varty GB, Higgins GA (1995b) Reversal of dizocilpine-induced disruption of prepulse inhibition of an acoustic startle response by the 5-HT2 receptor antagonist ketanserin. Eur J Pharmacol 287:201–205

    CAS  PubMed  Google Scholar 

  42. Varty GB, Bakshi VP, Geyer MA (1999) M100907, a serotonin 5-HT2A receptor antagonist and putative antipsychotic, blocks dizocilpine-induced prepulse inhibition deficits in Sprague-Dawley and Wistar rats. Neuropsychopharmacology 20:311–321

    Article  CAS  PubMed  Google Scholar 

  43. Wadenberg ML, Hertel P, Fernholm R, Hygge Blakeman K, Ahlenius S, Svensson TH (2000) Enhancement of antipsychotic-like effects by combined treatment with the alpha1-adrenoceptor antagonist prazosin and the dopamine D2 receptor antagonist raclopride in rats. J Neural Transm 107:1229–1238

    Article  CAS  PubMed  Google Scholar 

  44. Wustrow DJ, Davis MD, Akunne HC, Corbin AE, Wiley JN, Wise LD, Heffner TG (1995) Reduced amide bond neurotensin 8–13 mimetics with potent in vivo activity. Bioorg Med Chem Lett 5:997–1002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.F. and P.D.S. were supported in part by NIMH grant (MH62451). E.R. was supported by MH27692, The Forrest C. Lattner Foundation, and the Mayo Foundation for Medical Education and Research. The experiments described here comply with the current laws of the USA. We are grateful to the NIH Chemical Synthesis Program and SRI International for providing PD149163.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Feifel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shilling, P.D., Melendez, G., Priebe, K. et al. Neurotensin agonists block the prepulse inhibition deficits produced by a 5-HT2A and an α1 agonist. Psychopharmacology 175, 353–359 (2004). https://doi.org/10.1007/s00213-004-1835-5

Download citation

Keywords

  • NT69L
  • PD149163
  • Serotonin
  • Norepinephrine
  • Schizophrenia
  • Antipsychotic drugs