The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats

Abstract

Rationale

Recent studies have shown that metabotropic glutamate receptor 5 (mGluR5) can modulate N-methyl-d-aspartate (NMDA) receptor function in vivo. For example, the mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP) can potentiate PCP (phencyclidine)-evoked hyperactivity and PCP-induced disruptions in pre-pulse inhibition (PPI) in rats.

Objective

To extend these previous behavioral findings and determine whether the mGluR5 antagonist MPEP can modulate the disruptions in learning and memory induced by PCP in rats.

Methods

The effects of MPEP, alone and in combination with PCP, were evaluated in rats trained to perform a repeated acquisition procedure (learning) or a delayed non-matching to position (DNMTP) radial maze task (spatial memory).

Results

In the repeated acquisition task, MPEP (0–10 mg/kg, IP) dose-dependently decreased response rates but had no effect on response accuracy. In contrast, PCP (0.625–1.25 mg/kg, SC) reduced response rate and response accuracy in a dose-dependent manner. Although MPEP (10 mg/kg, IP) had no effect when administered alone, the mGluR5 antagonist potentiated the disruptions in learning induced by a low dose of PCP (0.625 mg/kg, SC). In the DNMTP maze task, MPEP (0–10 mg/kg, IP) had no effect on spatial memory, whereas PCP (1.25–2.5 mg/kg, SC) produced a dose-dependent disruption. MPEP (10 mg/kg, IP) potentiated the impairments in memory induced by PCP (1.25 mg/kg, SC).

Conclusion

The mGluR5 antagonist, MPEP, potentiated the disruptions in learning and memory induced by PCP. These behavioral data extend previous behavioral findings and further suggest that mGluR5 can modulate NMDA receptor function in vivo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry 43:811–816

    CAS  PubMed  Google Scholar 

  2. Alagarsamy S, Marino MJ, Rouse ST, Gereau RW IV, Heinemann SF, Conn PJ (1999) Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 2:234–240

    Article  CAS  PubMed  Google Scholar 

  3. Anderson JJ, Rao SP, Rowe B, Giracello DR, Holtz G, Chapman DF, Tehrani L, Bradbury MJ, Cosford ND, Varney MA (2002) [3H]Methoxymethyl-3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J Pharmacol Exp Ther 303:1044–1051

    Article  CAS  PubMed  Google Scholar 

  4. Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ (2000) Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 20:7871–7879

    CAS  PubMed  Google Scholar 

  5. Balschun D, Wetzel W (2002) Inhibition of mGluR5 blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol Biochem Behav 73:375–380

    Article  CAS  PubMed  Google Scholar 

  6. Baron SP, Moerschbaecher JM (1996) Disruption of learning by excitatory amino acid receptor antagonists. Behav Pharmacol 7:573–584

    CAS  PubMed  Google Scholar 

  7. Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M (2002) Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 22:5669–5678

    CAS  PubMed  Google Scholar 

  8. Brodkin J, Moerschbaecher JM (1997) SR141716A antagonizes the disruptive effects of cannabinoid ligands on learning in rats. J Pharmacol Exp Ther 282:1526–1532

    CAS  PubMed  Google Scholar 

  9. Brodkin J, Busse C, Sukoff SJ, Varney MA (2002a) Anxiolytic-like activity of the mGluR5 antagonist MPEP a comparison with diazepam and buspirone. Pharmacol Biochem Behav 73:359–366

    Article  CAS  PubMed  Google Scholar 

  10. Brodkin J, Bradbury M, Busse C, Warren N, Bristow LJ, Varney MA (2002b) Reduced stress-induced hyperthermia in mGluR5 knockout mice. Eur J Neurosci 16:2241–2244

    Article  CAS  PubMed  Google Scholar 

  11. Butelman ER (1990) The effect of NMDA antagonists in the radial arm maze task with an interposed delay. Pharmacol Biochem Behav 35:533–536

    Article  CAS  PubMed  Google Scholar 

  12. Campbell CM, Butelman ER, Woods JH (1999) Effects of (+)-HA-966, CGS-19755, phencyclidine, and dizocilpine on repeated acquisition of response chains in pigeons: systemic manipulation of central glycine sites. J Pharmacol Exp Ther 289:521–527

    CAS  PubMed  Google Scholar 

  13. Chavez-Noriega LE, Schaffhauser H, Campbell UC (2002) Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia. Curr Drug Targets—CNS Neurol Disord 1:261–281

    Google Scholar 

  14. Fitzjohn SM, Irving AJ, Palmer MJ, Harvey J, Lodge D, Collingridge GL (1996) Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. Neurosci Lett 26 203:211–213

    Article  CAS  Google Scholar 

  15. Goff DC, Tsai G, Manoach DS, Coyle JT (1995) Dose-finding trial of d-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 152:1213–1215

    CAS  PubMed  Google Scholar 

  16. Goodman AB, Pardee AB (2000) Molecular neurobiological mechanisms in schizophrenia: seeking a synthesis. Biol Psychiatry 48:173–183

    Article  CAS  PubMed  Google Scholar 

  17. Green MF, Braff DL (2001) Translating the basic and clinical cognitive neuroscience of schizophrenia to drug development and clinical trials of antipsychotic medications. Biol Psychiatry 49:374–384

    Article  CAS  PubMed  Google Scholar 

  18. Henry SA, Dulawa SC, Conquet F, Geyer MA (1999) Severe disruption of prepulse inhibition in mice lacking mGluR5. Soc Neurosci Abstr 25:449

    Google Scholar 

  19. Henry SA, Lehmann-Masten V, Gasparini F, Geyer MA, Markou A (2002) The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 43:1199–1209

    Article  CAS  PubMed  Google Scholar 

  20. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D (1996) Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 169:610–617

    CAS  PubMed  Google Scholar 

  21. Heresco-Levy U, Javitt DC, Ermilov M, Silipo G, Shimoni J (1998) Double-blind, placebo-controlled, crossover trial of d-cycloserine adjuvant therapy for treatment-resistant schizophrenia. Int J Neuropsychopharmcol 1:131–135

    Article  PubMed  Google Scholar 

  22. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56:29–36

    CAS  PubMed  Google Scholar 

  23. Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC (2002) Placebo-controlled trial of d-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 159:480–482

    Article  PubMed  Google Scholar 

  24. Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 151:1234–1236

    CAS  PubMed  Google Scholar 

  25. Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    CAS  PubMed  Google Scholar 

  26. Jia Z, Lu Y, Henderson J, Taverna F, Romano C, Abramow-Newerly W, Wojtowicz JM, Roder J (1998) Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. Learn Mem 5:331–343

    CAS  PubMed  Google Scholar 

  27. Keefe RS, Silva SG, Perkins DO, Lieberman JA (1999) The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull 25:201–222

    CAS  PubMed  Google Scholar 

  28. Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors (mglur5) modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123

    Article  CAS  PubMed  Google Scholar 

  29. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    CAS  PubMed  Google Scholar 

  30. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Article  CAS  PubMed  Google Scholar 

  31. Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K, Gilmore J (2001) The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry 50:884–897

    Article  CAS  PubMed  Google Scholar 

  32. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17:5196–5205

    CAS  PubMed  Google Scholar 

  33. Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488–1500

    CAS  PubMed  Google Scholar 

  34. Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    CAS  PubMed  Google Scholar 

  35. Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    CAS  PubMed  Google Scholar 

  36. Mannaioni G, Marino MJ, Valenti O, Traynelis SF, Conn PJ (2001) Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci 21:5925–5934

    CAS  PubMed  Google Scholar 

  37. Marino MG, Conn PJ (2002) Direct and indirect modulation of the N-methyl-d-aspartate receptor: potential for the development of novel antipsychotic therapies. Curr Drug Targets—CNS Neurol Disord 1:1–16

    Google Scholar 

  38. Meltzer HY (1999) Treatment of schizophrenia and spectrum disorders: pharmacotherapy, psychosocial treatments, and neurotransmitter interactions. Biol Psychiatry 46:1321–1327

    CAS  PubMed  Google Scholar 

  39. Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    CAS  PubMed  Google Scholar 

  40. Moerschbaecher JM, Mastropaolo J, Winsauer PJ, Thompson DM (1984) Effects of opioids on accuracy of a fixed-ratio discrimination in monkeys and rats. J Pharmacol Exp Ther 230:541–549

    CAS  PubMed  Google Scholar 

  41. National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington D.C.

  42. Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118

    CAS  PubMed  Google Scholar 

  43. Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  CAS  PubMed  Google Scholar 

  44. O’Leary DM, Movsesyan V, Vicini S, Faden AI (2000) Selective mGluR5 antagonists MPEP and SIB-1893 decrease NMDA or glutamate-mediated neuronal toxicity through actions that reflect NMDA receptor antagonism. Br J Pharmacol 131:1429–1437

    CAS  PubMed  Google Scholar 

  45. O’Meara GF, Newman RJ, Reynolds DS, Bristow LJ, Dawson GR (2002) Behavioral evaluation of mGluR5 knockout mouse. FENS Abstr 1:A087.6

    Google Scholar 

  46. Ossowska K, Konieczny J, Wolfarth S, Wieronska J, Pilc A (2001) Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 41:413–420

    Google Scholar 

  47. Petersen S, Bomme C, Baastrup C, Kemp A, Christoffersen GR (2002) Differential effects of mGluR1 and mGlur5 antagonism on spatial learning in rats. Pharmacol Biochem Behav 73:381–389

    Article  CAS  PubMed  Google Scholar 

  48. Pilc A, Klodzinska A, Branski P, Nowak G, Palucha A, Szewczyk B, Tatarczynska E, Chojnacka-Wojcik E, Wieronska JM (2002) Multiple MPEP administrations evoke anxiolytic- and antidepressant-like effects in rats. Neuropharmacology 43:181–187

    Article  CAS  PubMed  Google Scholar 

  49. Pisani A, Gubellini P, Bonsi P, Conquet F, Picconi B, Centonze D, Bernardi G, Calabresi P (2001) Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-d-aspartate responses in medium spiny striatal neurons. Neuroscience 106:579–587

    Article  CAS  PubMed  Google Scholar 

  50. Popik P, Wrobel M (2002) Morphine conditioned reward is inhibited by MPEP, the mGluR5 antagonist. Neuropharmacology 43:1210–1217

    Article  CAS  PubMed  Google Scholar 

  51. Romano C, Sesma MA, McDonald CT, O’Malley K, Van den Pol AN, Olney JW (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol 355:455–469

    CAS  PubMed  Google Scholar 

  52. Sharma T (1999) Cognitive effects of conventional and atypical antipsychotics in schizophrenia. Br J Psychiatry Suppl 38:44–51

    Google Scholar 

  53. Sharma T, Antonova L (2003) Cognitive function in schizophrenia. Deficits, functional consequences, and future treatment. Psychiatr Clin N Am 26:25–40

    Google Scholar 

  54. Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 26 163:53–57

    Article  CAS  Google Scholar 

  55. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    CAS  PubMed  Google Scholar 

  56. Spooren WP, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, Gentsch C (2000) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295:1267–1275

    CAS  PubMed  Google Scholar 

  57. Spooren WP, Schoeffter P, Gasparini F, Kuhn R, Gentsch C (2002) Pharmacological and endocrinological characterisation of stress-induced hyperthermia in singly housed mice using classical and candidate anxiolytics (LY314582, MPEP and NKP608). Eur J Pharmacol 435:161–170

    Article  CAS  PubMed  Google Scholar 

  58. Stip E (1996) Memory impairment in schizophrenia: perspectives from psychopathology and pharmacotherapy. Can J Psychiatry 41:S27–34

    CAS  Google Scholar 

  59. Tamminga CA, Buchanan RW, Gold JM (1998) The role of negative symptoms and cognitive dysfunction in schizophrenia outcome. Int Clin Psychopharmacol 13:S21–26

    PubMed  Google Scholar 

  60. Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Palucha A, Gasparini F, Kuhn R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132:1423–1430

    PubMed  Google Scholar 

  61. Thompson DM, Moerschbaecher JM (1979) An experimental analysis of the effects of d-amphetamine and cocaine on the acquisition and performance of response chains in monkeys. J Exp Anal Behav 32:433–444

    CAS  PubMed  Google Scholar 

  62. Wieronska JM, Szewczyk B, Branski P, Palucha A, Pilc A (2002) Antidepressant-like effect of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist in the olfactory bulbectomized rats. Amino Acids 23:213–216

    Article  CAS  PubMed  Google Scholar 

  63. Winsauer PJ, Bixler MA, Mele PC (1996) Comparison of the effects of typical and atypical anxiolytics on learning in monkeys and rats. J Pharmacol Exp Ther 276:1111–1127

    CAS  PubMed  Google Scholar 

  64. Winsauer PJ, Rodriguez FH, Cha AE, Moerschbaecher JM (1999) Full and partial 5-HT1A receptor agonists disrupt learning and performance in rats. J Pharmacol Exp Ther 288:335–347

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Una C. Campbell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Campbell, U.C., Lalwani, K., Hernandez, L. et al. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology 175, 310–318 (2004). https://doi.org/10.1007/s00213-004-1827-5

Download citation

Keywords

  • Behavior
  • Cognition
  • Metabotropic glutamate receptors
  • Learning
  • Memory
  • MPEP
  • NMDA
  • Phencyclidine
  • Schizophrenia