Skip to main content

Advertisement

Log in

Methamphetamine discrimination and in vivo microdialysis in squirrel monkeys

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Characterization of changes in dopamine activity associated with the discriminative-stimulus effects of methamphetamine (MA) and related stimulants will aid our understanding of the role of dopamine in mediating the subjective effects of this drug class.

Objectives

Squirrel monkeys were studied to explore the relationship between discriminative-stimulus effects of psychomotor stimulant drugs and their ability to increase extracellular dopamine levels in the caudate nucleus.

Methods

The ability of MA, cocaine and methylphenidate (0.01–0.32 mg/kg) to produce MA-like discriminative-stimulus effects was assessed in monkeys trained to discriminate IM injections of 0.32 mg/kg MA from saline. In addition, the effects of a range of MA doses (0.01–0.32 mg/kg) and selected doses of cocaine, methylphenidate and the GBR 12909 analog AM2517 on extracellular dopamine in the caudate nucleus were determined by microdialysis.

Results

MA, cocaine and methylphenidate produced dose-related increases in responding on the MA-associated lever and fully substituted at higher doses. In microdialysis studies, doses of MA, cocaine, methylphenidate, and AM2517 that produced 100% MA-lever responding produced comparable increases in caudate dopamine (to approximately 250% of control values). However, comparable increases in extracellular dopamine also were observed following a lower dose of MA (0.1 mg/kg) that produced, on average, 42% MA-lever responding. Moreover, increases in dopamine levels following administration of 0.03 and 0.1 mg/kg MA persisted after responding on the MA-associated lever had subsided.

Conclusions

Taken together, these results support a prominent role for dopamine in MA-like discriminative-stimulus effects, but are consistent with the additional involvement of other neurochemical actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Benveniste H, Hansen AJ, Ottosen NS (1989) Determination of brain interstitial concentrations by microdialysis. J Neurochem 52:1741–1750

    CAS  PubMed  Google Scholar 

  • Bergman J, Kamien JB, Spealman RD (1990) Antagonism of cocaine self-administration by selective dopamine D(1) and D(2) antagonists. Behav Pharmacol 1:355–363

    PubMed  Google Scholar 

  • Bolden-Watson C, Richelson E (1993) Blockade by newly-developed antidepressants of biogenic amine uptake into rat brain synaptosomes. Life Sci 52:1023–1029

    CAS  PubMed  Google Scholar 

  • Bradberry CW (2000a) Acute and chronic dopamine dynamics in a non-human primate model of recreational cocaine use. J Neurosci 20:7109–7115

    CAS  PubMed  Google Scholar 

  • Bradberry CW (2000b) Applications of microdialysis methodology in nonhuman primates: practice and rationale. Crit Rev Neurobiol 14:143–163

    CAS  PubMed  Google Scholar 

  • Bradberry CW, Barrett-Larimore RL, Jatlow P, Rubino SR (2000) Impact of self-administered cocaine and cocaine cues on extracellular dopamine in mesolimbic and sensorimotor striatum in rhesus monkeys. J Neurosci 20:3874–3883

    CAS  PubMed  Google Scholar 

  • Broadbent J, Michel EK, Appel JB (1989) Generalization of cocaine to the isomers of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine: effects of training dose. Drug Dev Res 16:443–450

    CAS  Google Scholar 

  • Caine SB, Koob GF (1994) Effects of mesolimbic dopamine depletion on responding maintained by cocaine and food. J Exp Anal Behav 61:213–221

    CAS  PubMed  Google Scholar 

  • Carelli RM (2002) Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. “natural” reinforcement. Physiol Behav 76:379–387

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A (1975) Receptor-mediated control of dopamine metabolism. In: Usdin E, Snyder S (eds) Pre- and postsynaptic receptors. Dekker, New York, p 49

  • Comer SD, France CP, Woods JH (1991) Training dose: influences in opioid drug discrimination. NIDA Res Monogr 116:145–161

    CAS  PubMed  Google Scholar 

  • Czoty PW, Justice JB Jr, Howell LL (2000) Cocaine-induced changed in extracellular dopamine determined by microdialysis in awake squirrel monkeys. Psychopharmacology 148:299–306

    CAS  PubMed  Google Scholar 

  • Czoty PW, Ginsburg BC, Howell LL (2002a) Serotonergic attenuation of the reinforcing and neurochemical effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther 300:831–837

    CAS  PubMed  Google Scholar 

  • Czoty PW, Mutschler NH, Makriyannis A, Bergman J (2002b) Methamphetamine-like discriminative stimulus effects of novel GBR 12909 analogs in squirrel monkeys. Drug Alcohol Depend 66:S39

    Article  Google Scholar 

  • Di Matteo V, Cacchio M, Di Giulio C, Esposito E (2002) Role of serotonin2C receptors in the control of brain dopaminergic function. Pharmacol Biochem Behav 71:727–734

    Google Scholar 

  • Emmers R, Ackert K (1963) A stereotaxic atlas of the squirrel monkey (Saimiri sciureus). University of Wisconsin Press, Madison, Wisconsin

  • Evans SM, Johanson CE (1987) Amphetamine-like effects of anorectics and related compounds in pigeons. J Pharmacol Exp Ther 241:817–825

    CAS  PubMed  Google Scholar 

  • Florin SM, Kuczenski R, Segal DS (1995) Effects of reserpine on extracellular caudate dopamine and hippocampus norepinephrine responses to amphetamine and cocaine: mechanistic and behavioral considerations. J Pharmacol Exp Ther 274:231–241

    CAS  PubMed  Google Scholar 

  • Grech DM, Spealman RD, Bergman J (1996) Self-administration of D1 receptor agonists by squirrel monkeys. Psychopharmacology 125:97–104

    CAS  PubMed  Google Scholar 

  • Haber SN, McFarland NR (1999) The concept of the ventral striatum in nonhuman primates. Ann N Y Acad Sci 877:33–48

    CAS  Google Scholar 

  • Howell LL, Czoty PW, Byrd LD (1997) Pharmacological interactions between serotonin and dopamine on behavior in the squirrel monkey. Psychopharmacology 131:40–48

    Article  CAS  PubMed  Google Scholar 

  • Howell LL, Czoty PW, Kuhar MJ, Carroll FI (2000) Comparative behavioral pharmacology of cocaine and the selective dopamine uptake inhibitor RTI-113 in the squirrel monkey. J Pharmacol Exp Ther 292:521–529

    CAS  PubMed  Google Scholar 

  • Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council (1996) Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, D.C.

  • Iyer RN, Nobiletti JB, Jatlow PI, Bradberry CW (1995) Cocaine and cocaethylene: effects on extracellular dopamine in the primate. Psychopharmacology 120:150–155

    CAS  PubMed  Google Scholar 

  • Kamien JB. Woolverton WL (1989) A pharmacological analysis of the discriminative stimulus properties of d-amphetamine in rhesus monkeys. J Pharmacol Exp Ther 248:938–946

    Google Scholar 

  • Katz JL, Sharpe LG, Jaffe JH, Shores EI, Witkin JM (1991) Discriminative stimulus effects of inhaled cocaine in squirrel monkeys. Psychopharmacology 105:317–321

    CAS  PubMed  Google Scholar 

  • Kelleher RT, Morse WH (1968) Determinants of the specificity of behavioral effects of drugs. Ergebn Physiol 60:1-56

    CAS  Google Scholar 

  • Kleven MS, Anthony EW, Woolverton WL (1990) Pharmacological characterization of the discriminative stimulus effects of cocaine in rhesus monkeys. J Pharmacol Exp Ther 254:312–317

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1989) Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 9:2051–2065

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinepherine: comparison with amphetamine. J Neurochem 68:2032–2037

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinepherine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    CAS  PubMed  Google Scholar 

  • Lamas X, Negus SS, Hall E, Mello NK (1995) Relationship between the discriminative stimulus effects and plasma concentrations of intramuscular cocaine in rhesus monkeys. Psychopharmacology 121:331–338

    CAS  PubMed  Google Scholar 

  • Miczek KA, Mutschler NH, van Erp AM, Blank AD, McInerney SC (1999) d-Amphetamine “cue” generalizes to social defeat stress: behavioral sensitization and attenuated accumbens dopamine. Psychopharmacology 147:190–199

    Google Scholar 

  • Munzar P, Goldberg SR (1999) Noradrenergic modulation of the discriminative stimulus effects of methamphetamine in rats. Psychopharmacology 143:293–301

    Article  CAS  PubMed  Google Scholar 

  • Munzar P, Goldberg SR (2000) Dopaminergic modulation of the discriminative stimulus effects of methamphetamine in rats. Psychopharmacology 148:209–216

    CAS  PubMed  Google Scholar 

  • Munzar P, Laufert MD, Kutkat SW, Novakova J, and Goldberg SR (1999) Effects of various serotonin agonists, antagonists, and uptake inhibitors on the discriminative effects of methamphetamine in rats. J Pharmacol Exp Ther 291:239–250

    CAS  PubMed  Google Scholar 

  • Pettit HO, Justice JB Jr (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 34:899–904

    CAS  PubMed  Google Scholar 

  • Pettit HO, Justice JB Jr (1991) Effect of dose on cocaine self-administration behavior and dopamine levels in the nucleus accumbens. Brain Res 539:94–102

    CAS  PubMed  Google Scholar 

  • Ranaldi R, Pocock D, Zereik R, Wise RA (1999) Dopamine fluctuations in the nucleus accumbens during maintenance, extinction, and reinstatement of intravenous d-amphetamine self-administration. J Neurosci 19:4102–4109

    CAS  PubMed  Google Scholar 

  • Roth RH (1979) Dopamine autoreceptors : pharmacology, function and comparison with post-synaptic dopamine receptors. Commun Psychopharmacol 3:429–445

    CAS  PubMed  Google Scholar 

  • Schama KF, Howell LL, Byrd LD (1997) Serotonergic modulation of the discriminative-stimulus effects of cocaine in squirrel monkeys. Psychopharmacology 132:27–34

    Article  CAS  PubMed  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    CAS  PubMed  Google Scholar 

  • Snoddy AM, Tessel RE (1983) Nisoxetine and amphetamine share discriminative stimulus properties in rats. Pharmacol Biochem Behav 19:205–210

    CAS  PubMed  Google Scholar 

  • Spealman RD (1985) Discriminative-stimulus effects of midazolam in squirrel monkeys: comparison with other drugs and antagonism by Ro 15-1788. J Pharmacol Exp Ther 235:456–462

    CAS  PubMed  Google Scholar 

  • Spealman RD (1993) Modification of behavioral effects of cocaine by selective serotonin and dopamine uptake inhibitors in squirrel monkeys. Psychopharmacology 112:93–99

    CAS  PubMed  Google Scholar 

  • Spealman RD (1995) Noradrenergic involvement in the discriminative stimulus effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther 275:53–62

    CAS  PubMed  Google Scholar 

  • Spealman RD, Bergman J, Madras BK, Melia KF (1991) Discriminative stimulus effects of cocaine in squirrel monkeys: involvement of dopamine receptor subtypes. J Pharmacol Exp Ther 258:945–953

    CAS  PubMed  Google Scholar 

  • Stolerman IP (1989) Discriminative stimulus effects of nicotine in rats trained under different schedules of reinforcement. Psychopharmacology 97:131–138

    CAS  PubMed  Google Scholar 

  • Stolerman IP, Garcha HS, Pratt JA, Kumar R (1984) Role of training dose in discrimination of nicotine and related compounds by rats. Psychopharmacology 84:413–419

    Google Scholar 

  • Tidey JW, Bergman J (1998) Drug discrimination in methamphetamine-trained monkeys: agonist and antagonist effects of dopaminergic drugs. J Pharmacol Exp Ther 285:1163–1174

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang G-J, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logan J, Gatley SJ, Pappas N, Hitzemann R, Shea CE (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827–830

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang G-J, Fowler JS, Logan J, Gatley SJ, Wong C, Hitzemann R, Pappas NR (1999) Reinforcing effects of psychostimulants in humans are associated with increases in brain DAT and occupancy of D2 receptors. J Pharmacol Exp Ther 291:409–415

    CAS  PubMed  Google Scholar 

  • Weed MR, Woolverton WL (1995) The reinforcing effects of dopamine D1 receptor agonists in rhesus monkeys. J Pharmacol Exp Ther 275:1367–1374

    CAS  PubMed  Google Scholar 

  • Westerink BHC (1995) Brain microdialysis and its application for the study of aminal behaviour. Behav Brain Res 70:103–124

    Article  CAS  PubMed  Google Scholar 

  • Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 57:411–441

    CAS  PubMed  Google Scholar 

  • Woolverton WL, Virus RM (1989) The effects of a D1 and a D2 dopamine antagonist on behavior maintained by cocaine or food. Pharmacol Biochem Behav 32:691–697

    CAS  PubMed  Google Scholar 

  • Woolverton WL, Goldberg LI, Ginos JZ (1984) Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Ther 230:678–683

    CAS  PubMed  Google Scholar 

  • Yokel RA, Wise RA (1976) Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology 48:311–318

    Google Scholar 

  • Yokel RA, Wise RA (1978) Amphetamine-type reinforcement by dopaminergic agonists in the rat. Psychopharmacology 58:289–296

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical assistance of Ms. Michelle Eaton and Ms. Anne Smith for technical assistance. This research was supported by National Institute on Drug Abuse (NIDA) grants DA03774, DA10566, DA07252, DA11949, DA07312 and DA00493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Bergman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czoty, P.W., Makriyannis, A. & Bergman, J. Methamphetamine discrimination and in vivo microdialysis in squirrel monkeys. Psychopharmacology 175, 170–178 (2004). https://doi.org/10.1007/s00213-004-1798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1798-6

Keywords

Navigation