Skip to main content
Log in

Repeated doses administration of MDMA in humans: pharmacological effects and pharmacokinetics

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is increasingly used by young people for its euphoric and empathic effects. MDMA presents non-linear pharmacokinetics, probably by inhibition of cytochrome P450 isoform 2D6. Users are known to often take more than one dose per session. This practice could have serious implications for the toxicity of MDMA.

Objective

To evaluate the pharmacological effects and pharmacokinetics of MDMA following the administration of two repeated doses of MDMA (24 h apart).

Methods

A randomised, double-blind, cross-over, placebo controlled trial was conducted in nine healthy male subjects. Variables included physiological, psychomotor performance, subjective effects, endocrine response and pharmacokinetics. MDMA 100 mg or placebo was administered in two successive doses separated by an interval of 24 h.

Results

MDMA produced the prototypical effects of the drug. Following a second dose, plasma concentrations of MDMA increased (AUC 77% and Cmax 29%) in comparison with the first. The increase is greater than those expected by simple accumulation and indicates metabolic inhibition. The pharmacological effects after the second dose were slightly higher than those observed after the first in the majority of variables including blood pressure, heart rate, most subjective effects and cortisol concentrations. The effects were similar in the case of pupil diameter, esophoria and prolactin.

Conclusions

Pharmacological effects after the second administration were higher than those following the first but lower than expected. A disproportionate increase in plasma concentrations in MDMA and MDA was observed most likely due to metabolic inhibition. This inhibition lasts at least 24 h. Further experiments need to be conducted to evaluate its duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bertelsen KM, Venkatakrishnan K, Von Moltke LL, Obach RS, Greenblatt DJ (2003) Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: comparison with fluoxetine and quinidine. Drug Metab Dispos 31:289–293

    Article  CAS  PubMed  Google Scholar 

  • Bowyer JF, Young JF, Slikker W, Itzak Y, Mayorga AJ, Newport GD, Ali SF, Frederick DL, Paule MG (2003) Plasma levels of parent compound and metabolites after doses of either d-fenfluramine or d-3,4 methylenedioxymethamphetamine (MDMA) that produce long-term serotonergic alterations. Neurotoxicology 24:379–390

    Article  CAS  PubMed  Google Scholar 

  • Camí J, Farré M (2003) Drug addiction. N Engl J Med 349:975–986

    Article  PubMed  Google Scholar 

  • Camí J, Farré M, Mas M, Roset PN, Poudevida S, Mas A, San L, de la Torre R (2000) Human Pharmacology of 3,4-Methylenedioxymethamphetamine (“ecstasy”): psychomotor performance and subjective effects. J Clin Psychopharmacol 20:455–466

    Article  CAS  PubMed  Google Scholar 

  • Comer SD, Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Effects of repeated oral methamphetamine administration in humans. Psychopharmacology 155:397–404

    Google Scholar 

  • Delaforge M, Jaouen M, Bouille G. (1999) Inhibitory metabolite complex formation of methylendioxymethamphetamine with rat and human cytochrome P450. Particular involvement of CYP2D. Environ Toxicol Pharmacol 7:153–158

    Article  CAS  Google Scholar 

  • de la Torre R, Farré M, Ortuño J, Mas M, Brenneisen R, Roset PN, Segura J (2000a) Non-linear pharmacokinetics of MDMA (“ecstasy”) in humans. Br J Clin Pharmacol 49:104–109

    PubMed  Google Scholar 

  • de la Torre R, Farre M, Roset PN, Hernandez Lopez C, Mas M, Ortuno J, Menoyo E, Pizarro N, Segura J, Camí J (2000b) Pharmacology of MDMA in humans. Ann N Y Acad Sci 914:225–237

    PubMed  Google Scholar 

  • Farré M, de la Torre R, Llorente M, Lamas X, Ugena B, Segura J, Camí J (1993) Alcohol and cocaine interactions in humans. J Pharmacol Exp Ther 266:1364–1373

    PubMed  Google Scholar 

  • Farré M, de la Torre R, Gonzalez ML, Teran MT, Roset PN, Menoyo E, Camí J (1997) Cocaine and alcohol interactions in humans: neuroendocrine effects and cocaethylene metabolism. J Pharmacol Exp Ther 283:164–176

    PubMed  Google Scholar 

  • Farré M, Roset PN, Hernández-López C, Poudevida S, Menoyo E, de la Torre R, Ortuño J, Peiró A, Camí J (2001) Repeated administration of MDMA to healthy volunteers. Drug Alcohol Depend 63:175

    Google Scholar 

  • Farré M, Roset P.N, de la Torre R, Segura M, Ortuño J, Peiró A.M, Torrens M, Pacifici R, Zuccaro P, Camí J (2002) Interaction of paroxetine and MDMA in humans. Drug Alcohol Depend 66:196

    Google Scholar 

  • Frederick DL, Ali SF, Slikker W Jr, Gillam MP, Allen RR, Paule MG (1995) Behavioral and neurochemical effects of chronic methylenedioxymethamphetamine (MDMA) treatment in rhesus monkeys. Neurotoxicol Teratol 17:531–543

    CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Greene SL, Dargan PI, O’connor N, Jones AL, Kerins M (2003) Multiple toxicity from 3,4-methylenedioxymethamphetamine (“ecstasy”). Am J Emerg Med 21:121–124

    Article  PubMed  Google Scholar 

  • Grob CS, Poland RE, Chang L, Ernst T (1996) Psychobiologic effects of 3,4-methylenedioxymethamphetamine in humans: methodological considerations and preliminary observations. Behav Pharmacol 73:103–107

    CAS  Google Scholar 

  • Haertzen CA (1974) An overview of the Addiction Center Research Inventory: an appendix and manual of scales DHEW Pub. no. (ADM) 79. Department of Health, Education and Welfare, Washington D.C.

    Google Scholar 

  • Hammersley R, Ditton J, Smith I,Short E (1999) Patterns of ecstasy use by drug users. Br J Criminol 39:625–647

    Article  Google Scholar 

  • Hannington-Kiff JG (1970) Measurement of recovery from out patient general anesthesia with a simple ocular test. BMJ 3:132–135

    CAS  PubMed  Google Scholar 

  • Harris DS, Baggott M, Mendelson JH, Mendelson JE, Jones RT (2002) Subjective and hormonal effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 162:396–405

    Article  CAS  PubMed  Google Scholar 

  • Henry JA, Fallon JK, Kicman AT, Hutt AJ, Cowan DA, Forsling M (1998) Low-dose MDMA (“ecstasy”) induces vasopressin secretion. Lancet. 351:1784

    Google Scholar 

  • Hernandez-Lopez C, Farre M, Roset PN, Menoyo E, Pizarro N, Ortuno J, Torrens M, Camí J, de La Torre R (2002) 3,4-Methylenedioxymethamphetamine (ecstasy) and alcohol interactions in humans: psychomotor performance, subjective effects, and pharmacokinetics. J Pharmacol Exp Ther 236–244

  • Kalant H (2001) The pharmacology and toxicology of ecstasy (MDMA) and related drugs. Can Med Assoc J 165:917–928

    CAS  Google Scholar 

  • Karash (2000) Opioid analgesics. In: Levy RH et al. (eds) Metabolic drug interactions. Lippincott Williams and Wilkins, Philadelphia, pp 297–319

  • Lamas X, Farré M, Llorente M, Camí J (1994) Spanish version of the 49-item short version of the Addiction Research Center Inventory (ARCI). Drug Alcohol Depend 35:203–209

    CAS  PubMed  Google Scholar 

  • Lester SJ, Baggott M, Welm S, Schiller NB, Jones RT, Foster E, Mendelson J (2000) Cardiovascular effects of 3,4-methylenedioxymethamphetamine. A double-blind, placebo-controlled trial. Ann Int Med 133:969–973

    CAS  Google Scholar 

  • Liechti ME, Vollenweider FX (2000a) The serotonin uptake inhibitor citalopram reduces acute cardiovascular and vegetative effects of 3,4-methylenedioxymethamphetamine (“ecstasy”) in healthy volunteers. J Psychopharmacol 14:269–274

    Google Scholar 

  • Liechti ME, Saur MR, Gamma A, Hell D, Vollenweider FX. (2000b) Psychological and physiological effects of MDMA (“ecstasy”) after pre-treatment with the 5-HT(2) antagonist ketanserin in healthy humans. Neuropsychopharmacology 23:396–404

    Article  CAS  PubMed  Google Scholar 

  • Martin WR, Sloan JW, Sapira JD, Jasinski DR (1971) Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther 12:245–258

    CAS  PubMed  Google Scholar 

  • Mas M, Farré M, de la Torre R, Roset PN, Ortuño J, Segura J, Camí J (1999) Cardiovascular and neuroendocrine effects, and pharmacokinetics of MDMA in humans. J Pharmacol Exp Ther 290:136–145

    CAS  PubMed  Google Scholar 

  • McLeod DR, Griffiths RR, Bigelow GE, Yingling J (1982) An automated version of the digit symbol substitution test (DSST). Behav Res Meth Instrum 14:463–466

    Google Scholar 

  • Morgan MJ (1999) Memory deficits associated with recreational use of “ecstasy” (MDMA). Psychopharmacology 141:30–36

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ (2000) Ecstasy (MDMA): a review of its possible persistent psychological effects. Psychopharmacology 152:230–248

    CAS  PubMed  Google Scholar 

  • Ortiz de Montellano PR, Correia MA. Inhibition of cytochrome P450 enzymes. In: Ortiz de Montellano (ed) Cytochrome P450: structure, mechanisms and biochemistry, 2nd edn. Plenum Press, New York, pp 305–364

  • Perez-Reyes M, White WR, McDonald SA, Hicks RE, Jeffcoat AR, Hill JM, Cook CE (1991) Clinical effects of daily methamphetamine administration. Clin Neuropharmacol 14:352–358

    CAS  PubMed  Google Scholar 

  • Pickworth WB, Fant RV and Bunker EB (1998) Effects of abused drugs on papillary size and the light reflex. In: Karch SB (eds) Drug abuse handbook. CRC Press, Boca Raton, Fla., pp 266–275

  • Pizarro N, Ortuno J, Farre M, Hernandez-Lopez C, Pujadas M, Llebaria A, Joglar J, Roset PN, Mas M, Segura J, Camí J, de la Torre R (2002) Determination of MDMA and its metabolites in blood and urine by gas chromatography-mass spectrometry and analysis of enantiomers by capillary electrophoresis. J Anal Toxicol 26:157–165

    CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH (2002) Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther 95:73–88

    Article  CAS  PubMed  Google Scholar 

  • Schalk M, Cabello-Hurtado F, Pierrel MA, Atanossova R, Saindrenan P, Werck-Reichart D (1998) Piperonyl acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: a new tool to control the flux of metabolites in the phenylpropanoid pathway. 118:209–218

  • Schmidt B, Bircher J, Preisig R, Küpfer A (1985) Polymorphic dextromethorphan metabolism: co-segregation of oxidative o-demethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 38:618–624

    CAS  PubMed  Google Scholar 

  • Shumaker RC (1986) PKCALC: a BASIC interactive computer program for statistical and pharmacokinetic analysis of data. Drug Metab Rev 17:331–348

    Google Scholar 

  • Strakowski SM, Sax KW, Rosenberg HL, DelBello MP, Adler CM (2001) Human response to repeated low-dose d-amphetamine: evidence for behavioural enhancement and tolerance. Neuropsychopharmacology 25:548–554

    Article  CAS  PubMed  Google Scholar 

  • Tancer M, Johanson CE (2003) Reinforcing, subjective, and physiological effects of MDMA in humans: a comparison with d-amphetamine and mCPP. Drug Alcohol Depend 72:33–44

    Article  CAS  PubMed  Google Scholar 

  • Topp L, Hando J, Dillon P, Roche A, Solowij N (1999) Ecstasy use in Australia: patterns of use and associated harm. Drug Alcohol Depend 55:105–115

    CAS  PubMed  Google Scholar 

  • Vollenweider FX, Gamma A, Liechti M, Huber T (1998) Psychological and cardiovascular effects and short-term sequelae of MDMA (“ecstasy”) in MDMA-naive healthy volunteers. Neuropsychopharmacology 19:241–251

    Article  CAS  PubMed  Google Scholar 

  • Wechsler D (1958) The measurement and appraisal of adult intelligence. Williams & Wilkins, Baltimore

  • White SR, Obradovic T, Imel KM, Wheaton MJ (1996) The effects of methylenedioxymethamphetamine (MDMA, “ecstasy”) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 49:455–479

    CAS  PubMed  Google Scholar 

  • Winstock AR, Griffiths P, Stewart D. (2001) Drugs and the dance music scene: a survey of current drug use patterns among a sample of dance music enthusiasts in the UK. Drug Alcohol Depend 64:9–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from Generalitat de Catalunya (2001SGR00407), Fondo de Investigacíon Sanitaria (98/0181 and 01/1336). We are indebted to Esther Menoyo and Isabel Sánchez for their valuable assistance throughout the clinical trial. The clinical trial conformed to the derivates of Spanish laws concerning clinical trials (Ley de Medicamiento 25/1990, Real Decreto 561/1993).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farré, M., de la Torre, R., Ó Mathúna, B. et al. Repeated doses administration of MDMA in humans: pharmacological effects and pharmacokinetics. Psychopharmacology 173, 364–375 (2004). https://doi.org/10.1007/s00213-004-1789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1789-7

Keywords

Navigation