Skip to main content
Log in

Effects of a single dose of 3,4-methylenedioxymethamphetamine on circadian patterns, motor activity and sleep in drug-naive rats and rats previously exposed to MDMA

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Despite the well documented neurochemical actions of 3,4-methylenedioxymethamphetamine (MDMA), acute effects in rats previously exposed to the drug have not been extensively explored.

Objective

To examine motor activity and vigilance effects of MDMA in drug-naive rats and in rats exposed to the drug 3 weeks earlier.

Methods

MDMA (15 mg/kg, IP) was administered to Dark Agouti rats. Motor activity, wakefulness, light slow wave sleep (SWS-1), deep slow wave sleep (SWS-2) and paradoxical sleep (PS), sleep and PS latencies were measured. Acrophases and amplitudes of the 24 h cycles were calculated by cosinor analysis. In parallel groups, local cerebral glucose utilization (lCMRglu) and (3H)-paroxetine binding were measured in motor areas of the brain.

Results

In drug-naive rats MDMA caused marked increases in motor activity and wakefulness for at least 5–6 h. Circadian patterns of motor activity and sleep/vigilance parameters were altered up to 5 days after treatment. Despite most parameters tending to return to normal, there were still significant effects of MDMA on motor activity, wakefulness, and SWS-2 28 days later. Acute MDMA administration caused significant increases in lCMRglu, but after 3 weeks lCMRglu was decreased in the same brain areas. No significant change in [3H]paroxetine binding was observed in motor areas, although significant reductions were seen elsewhere (neocortex −81%). In rats exposed to MDMA 3 weeks earlier, most acute effects induced by MDMA administration were similar to those in drug-naive rats, but shorter duration of the acute effects were found in motor activity and vigilance.

Conclusions

Our findings provide evidence that MDMA use can lead to long-term changes in regulation of circadian rhythms, motor activity and sleep generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RP, McCann UD, Ricaurte GA (1993) Persistent effects of (±)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on human sleep. Sleep 16:560–564

    CAS  PubMed  Google Scholar 

  • Antle MC, Marchant EG, Niel L, Mistlberger RE (1998) Serotonin antagonists do not attenuate activity-induced phase shifts of circadian rhythms in the Syrian hamster. Brain Res 813:139–149

    Article  CAS  PubMed  Google Scholar 

  • Bagdy G, Graf M, Anheuer ZE, Modos EA, Kantor S (2001) Anxiety-like effects induced by acute fluoxetine, sertraline or m-CPP treatment are reversed by pretreatment with the 5-HT2C receptor antagonist SB-242084 but not the 5-HT1A receptor antagonist WAY-100635. Int J Neuropsychopharmacol 4:399–408

    CAS  PubMed  Google Scholar 

  • Biello SM, Dafters RI (2001) MDMA and fenfluramine alter the response of the circadian clock to a serotonin agonist in vitro. Brain Res 920:202–209

    Article  CAS  PubMed  Google Scholar 

  • Bjorvatn B, Ursin R (1990) Effects of zimeldine, a selective 5-HT reuptake inhibitor, combined with ritanserin, a selective 5-HT2 antagonist, on waking and sleep stages in rats. Behav Brain Res 40:239–246

    Article  CAS  PubMed  Google Scholar 

  • Borbely AA, Trachsel L, Tobler I (1988) Effect of ritanserin on sleep stages and sleep EEG in the rat. Eur J Pharmacol 156:275–278

    Article  CAS  PubMed  Google Scholar 

  • Callaway CW, Geyer MA (1992) Tolerance and cross-tolerance to the activating effects of 3,4-methylenedioxymethamphetamine and a 5-hydroxytryptamine1B agonist. J Pharmacol Exp Ther 263:318–326

    CAS  PubMed  Google Scholar 

  • Callaway CW, Rempel N, Peng RY, Geyer MA (1992) Serotonin 5-HT1-like receptors mediate hyperactivity in rats induced by 3,4-methylenedioxymethamphetamine. Neuropsychopharmacology 7:113–127

    Google Scholar 

  • Cambras T, Vilaplana J, Campuzano A, Canal-Corretger MM, Carulla M, Díez-Noguera (2000) Entrainment of the rat motor activity rhythm: effects of the light-dark cycle and physical exercise. Physiol Behav 70:227–232

    Article  CAS  PubMed  Google Scholar 

  • Chapin EM, Andrade R (2001a) A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. I. Pharmacological characterization. J Pharmacol Exp Ther 297:395–402

    CAS  PubMed  Google Scholar 

  • Chapin EM, Andrade R (2001b) A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current I(h). J Pharmacol Exp Ther 297:403–409

    CAS  PubMed  Google Scholar 

  • Colado MI, Esteban B, O’Shea E, Granados R, Green AR (1999) Studies on the neuroprotective effect of pentobarbitone on MDMA-induced neurodegeneration. Psychopharmacology 142:421–425

    Google Scholar 

  • Colado MI, O’Shea E, Esteban B, Green AR (2001) Studies on the neuroprotective effect of the enantiomers of AR-A008055, a compound structurally related to clomethiazole, on MDMA (“ecstasy”)-induced neurodegeneration in rat brain. Psychopharmacology 157:82–88

    Article  CAS  PubMed  Google Scholar 

  • Colbron S, Jones M, Biello SM (2002) MDMA alters the response of the circadian clock to a photic and non-photic stimulus. Brain Res 956:45–52

    Article  CAS  PubMed  Google Scholar 

  • Commins DL, Axt KJ, Vosmer G, Seiden LS (1987a) Endogenously produced 5,6-dihydroxytryptamine may mediate the neurotoxic effects of para-chloroamphetamine. Brain Res 419:253–261

    Article  CAS  PubMed  Google Scholar 

  • Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987b) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241:338–345

    CAS  PubMed  Google Scholar 

  • De Souza EB, Kuyatt BL (1987) Autoradiographic localization of 3H-paroxetine-labeled serotonin uptake sites in rat brain. Synapse 1:488–496

    PubMed  Google Scholar 

  • Doyon S (2001) The many faces of ecstasy. Curr Opin Pediatr 13:170–176

    Article  CAS  PubMed  Google Scholar 

  • Duncan WC Jr (1996) Circadian rhythms and the pharmacology of affective illness. Pharmacol Ther 71:253–312

    Article  CAS  PubMed  Google Scholar 

  • Esteban B, O’Shea E, Camarero J, Sanchez V, Green AR, Colado MI (2001) 3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose. Psychopharmacology 154:251–260

    Article  CAS  PubMed  Google Scholar 

  • Filakovszky J, Kantor S, Halasz P, Bagdy G (2001) 8-OH-DPAT and MK-801 affect epileptic activity independently of vigilance. Neurochem Int 38:551–556

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Hatzidimitriou G, Wlos J, Katz J, Ricaurte G (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (±)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurosci 15:5476–5485

    PubMed  Google Scholar 

  • Glass JD, Grossman GH, Farnbauch L, DiNardo L (2003) Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. J Neurosci 23:7451–7460

    CAS  PubMed  Google Scholar 

  • Gottesmann C (1992) Detection of seven sleep-waking stages in the rat. Neurosci Biobehav. Rev. 16:31–38

    Google Scholar 

  • Green AR, Cross AJ, Goodwin GM (1995) Review of the pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”). Psychopharmacology 119:247–260

    CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Fornal CA (1999) Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21:9S–15S

    CAS  PubMed  Google Scholar 

  • Johnson SW, Mercuri NB, North RA (1992) 5-Hydroxytryptamine1b receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci 12:2000–2006

    CAS  PubMed  Google Scholar 

  • Kantor S, Gerber K, Halasz P, Bagdy G (2000) The role of 5-HT2A, 5-HT2C and 5HT3 serotonin receptors in the regulation of sleep. J. Physiol 526:66P–67P

    Google Scholar 

  • Kantor S, Jakus R, Bodizs R, Halasz P, Bagdy G (2002) Acute and long-term effects of the 5-HT2 receptor antagonist ritanserin on EEG power spectra, motor activity, and sleep: changes at the light-dark phase shift. Brain Res 943:105–111

    Article  CAS  PubMed  Google Scholar 

  • Kelly PA, Ritchie IM, Collins FM (1995) Cerebrovascular consequences of repeated exposure to NG-nitro-l-arginine methyl ester. Br J Pharmacol 116:2771–2777

    CAS  PubMed  Google Scholar 

  • Kupfer DJ, Reynolds CF 3rd, Ulrich RF, Shaw DH, Coble PA (1982) EEG sleep, depression, and aging. Neurobiol Aging 3:351–360

    Article  CAS  PubMed  Google Scholar 

  • Manfredini R, Manfredini F, Fersini C, Conconi F (1998) Circadian rhythms, athletic performance, and jet lag. Br J Sports Med 32:101–106

    CAS  PubMed  Google Scholar 

  • Marston HM, Reid ME, Lawrence JA, Olverman HJ, Butcher SP (1999) Behavioural analysis of the acute and chronic effects of MDMA treatment in the rat. Psychopharmacology 144:67–76

    Google Scholar 

  • McCann UD, Eligulashvili V, Ricaurte GA (2000) (±)3,4-Methylenedioxymethamphetamine (“ecstasy”)-induced serotonin neurotoxicity: clinical studies. Neuropsychobiology 42:11–16

    CAS  Google Scholar 

  • McCreary AC, Bankson MG, Cunningham KA (1999) Pharmacological studies of the acute and chronic effects of (+)-3, 4-methylenedioxymethamphetamine on locomotor activity: role of 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B/1D) receptors. J Pharmacol Exp Ther 290:965–973

    CAS  PubMed  Google Scholar 

  • McKenna DJ, Peroutka SJ (1990) Neurochemistry and neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurochem 54:14–22

    CAS  PubMed  Google Scholar 

  • Mechan AO, O’Shea E, Elliott JM, Colado MI, Green AR (2001) A neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) to rats results in a long-term defect in thermoregulation. Psychopharmacology 155:413–418

    Google Scholar 

  • Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    CAS  PubMed  Google Scholar 

  • Meyer-Bernstein EL, Morin LP (1996) Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci 16:2097–111

    PubMed  Google Scholar 

  • Meyer-Bernstein EL, Blanchard JH, Morin LP (1997) The serotonergic projection from the median raphe nucleus to the suprachiasmatic nucleus modulates activity phase onset, but not other circadian rhythm parameters. Brain Res 755:112–120

    CAS  PubMed  Google Scholar 

  • Mintz EM, Gillespie CF, Marvel CL, Huhman KL, Albers HE (1997) Serotonergic regulation of circadian rhythms in Syrian hamsters. Neuroscience 79:563–569

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195

    Article  CAS  PubMed  Google Scholar 

  • Monckton J, McCormick DA (2003) Comparative physiological and serotoninergic properties of pulvinar neurons in the monkey, cat and ferret. Thalamus Related Systems (in press)

  • Monti JM, Jantos H (1992) Dose-dependent effects of the 5-HT1A receptor agonist 8-OH-DPAT on sleep and wakefulness in the rat. J Sleep Res 1:169–175

    PubMed  Google Scholar 

  • Monti JM, Monti D, Jantos H, Ponzoni A (1995) Effects of selective activation of the 5-HT1B receptor with CP-94,253 on sleep and wakefulness in the rat. Neuropharmacology 34:1647–1651

    Article  CAS  PubMed  Google Scholar 

  • Monti JM, Ponzoni A, Jantos H, Lagos P, Silveira R, Banchero P (1999) Effects of accumbens m-chlorophenylbiguanide microinjections on sleep and waking in intact and 6-hydroxydopamine-treated rats. Eur J Pharmacol 364:89–98

    CAS  PubMed  Google Scholar 

  • Morgan MJ (2000) Ecstasy (MDMA): a review of its possible persistent psychological effects. Psychopharmacology 152:230–248

    CAS  PubMed  Google Scholar 

  • Morin LP (1999) Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med 31:12–33

    CAS  PubMed  Google Scholar 

  • Mrosovsky N (1996) Locomotor activity and non-photic influences on circadian clocks. Biol Rev Camb Philos Soc 71:343–372

    CAS  PubMed  Google Scholar 

  • Nelson W, Tong YL, Lee J, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiologia 6:305–323

    CAS  PubMed  Google Scholar 

  • O’Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8:2788–2803

    CAS  PubMed  Google Scholar 

  • Parrott AC (2000) Human research on MDMA (3,4-methylene- dioxymethamphetamine) neurotoxicity: cognitive and behavioural indices of change. Neuropsychobiology 42:17–24

    CAS  PubMed  Google Scholar 

  • Parrott AC (2001) Human psychopharmacology of ecstasy (MDMA): a review of 15 years of empirical research. Hum Psychopharmacol 16:557–577

    CAS  Google Scholar 

  • Parrott AC, Lasky J (1998) Ecstasy (MDMA) effects upon mood and cognition: before, during and after a Saturday night dance. Psychopharmacology 139:261–268

    Article  CAS  PubMed  Google Scholar 

  • Parrott AC, Milani RM, Parmar R, Turner JD (2001) Recreational ecstasy/MDMA and other drug users from the UK and Italy: psychiatric symptoms and psychobiological problems. Psychopharmacology 159:77–82

    CAS  PubMed  Google Scholar 

  • Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60:13–35

    CAS  PubMed  Google Scholar 

  • Prosser RA, Dean RR, Edgar DM, Heller HC, Miller JD (1993) Serotonin and the mammalian circadian system: I. in vitro phase shifts by serotonergic agonists and antagonists. J Biol Rhythms 8:1–16

    PubMed  Google Scholar 

  • Rea MA, Pickard GE (2000) Serotonergic modulation of photic entrainment in the Syrian hamster. Biol Rhythm Res 31:284–314

    Article  CAS  Google Scholar 

  • Rempel NL, Callaway CW, Geyer MA (1993) Serotonin1B receptor activation mimics behavioral effects of presynaptic serotonin release. Neuropsychopharmacology 8:201–211

    CAS  PubMed  Google Scholar 

  • Reneman L, Booij J, Schmand B, van den Brink W, Gunning B (2000) Memory disturbances in “ecstasy” users are correlated with an altered brain serotonin neurotransmission. Psychopharmacology 148:322–324

    CAS  PubMed  Google Scholar 

  • Reynolds CF 3rd, Taska LS, Jarrett DB, Coble PA, Kupfer DJ (1983) REM latency in depression: is there one best definition? Biol Psychiatry 18:849–863

    PubMed  Google Scholar 

  • Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988a) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 446:165–168

    CAS  PubMed  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988b) (±)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260:51–55

    CAS  PubMed  Google Scholar 

  • Ricaurte GA, Martello AL, Katz JL, Martello MB (1992) Lasting effects of (±)-3,4-methylenedioxymethamphetamine (MDMA) on central serotonergic neurons in nonhuman primates: neurochemical observations. J Pharmacol Exp Ther 261:616–622

    CAS  PubMed  Google Scholar 

  • Ricaurte GA, Yuan J, McCann UD (2000) (±)3,4-Methylenedioxymethamphetamine (“ecstasy”)-induced serotonin neurotoxicity: studies in animals. Neuropsychobiology 42:5–10

    CAS  PubMed  Google Scholar 

  • Richardson GS, Malin HV (1996) Circadian rhythm sleep disorders: pathophysiology and treatment. J Clin Neurophysiol 13:17–31

    Article  CAS  PubMed  Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59:449–526

    CAS  PubMed  Google Scholar 

  • Sanchez V, Camarero J, Esteban B, Peter MJ, Green AR, Colado MI (2001) The mechanisms involved in the long-lasting neuroprotective effect of fluoxetine against MDMA (“ecstasy”)-induced degeneration of 5-HT nerve endings in rat brain. Br J Pharmacol 134:46–57

    CAS  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    CAS  PubMed  Google Scholar 

  • Scanzello CR, Hatzidimitriou G, Martello AL, Katz JL, Ricaurte GA (1993) Serotonergic recovery after (±)3,4-(methylenedioxy) methamphetamine injury: observations in rats. J Pharmacol Exp Ther 264:1484–1491

    Google Scholar 

  • Scearce K, Kassir S, Lucas J, Castanon N, Segu L, Arango V, Hen R (1997) Dopaminergic compensations in knockout mice lacking the serotonin 1B receptor. Society of Neuroscience, 27th Annual Meeting. Society for Neuroscience, New Orleans, La., p. 202.2

  • Schifano F (2000) Potential human neurotoxicity of MDMA (“ecstasy”): subjective self-reports, evidence from an Italian drug addiction centre and clinical case studies. Neuropsychobiology 42:25–33

    CAS  PubMed  Google Scholar 

  • Schifano F, Di Furia L, Forza G, Minicuci N, Bricolo R (1998) MDMA (“ecstasy”) consumption in the context of polydrug abuse: a report on 150 patients. Drug Alcohol Depend 52:85–90

    CAS  PubMed  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 240:1–7

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Wu L, Lovenberg W (1986) Methylenedioxymethamphetamine: a potentially neurotoxic amphetamine analogue. Eur J Pharmacol 124:175–178

    CAS  PubMed  Google Scholar 

  • Schuster P, Lieb R, Lamertz C, Wittchen HU (1998) Is the use of ecstasy and hallucinogens increasing? Results from a community study. Eur Addict Res 4:75–82

    CAS  PubMed  Google Scholar 

  • Shankaran M, Yamamoto BK, Gudelsky GA (2001) Ascorbic acid prevents 3,4-methylenedioxymethamphetamine (MDMA)-induced hydroxyl radical formation and the behavioral and neurochemical consequences of the depletion of brain 5-HT. Synapse 40:55–64

    Article  CAS  PubMed  Google Scholar 

  • Sharkey J, McBean DE, Kelly PA (1991) Alterations in hippocampal function following repeated exposure to the amphetamine derivative methylenedioxymethamphetamine (“ecstasy”). Psychopharmacology 105:113–118

    CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    CAS  PubMed  Google Scholar 

  • Sprague JE, Everman SL, Nichols DE (1998) An integrated hypothesis for the serotonergic axonal loss induced by 3,4-methylenedioxymethamphetamine. Neurotoxicology 19:427–441

    CAS  PubMed  Google Scholar 

  • Steele TD, McCann UD, Ricaurte GA (1994) 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”): pharmacology and toxicology in animals and humans. Addiction 89:539–551

    CAS  PubMed  Google Scholar 

  • Stone DM, Stahl DC, Hanson GR, Gibb JW (1986) The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128:41–48

    CAS  PubMed  Google Scholar 

  • Svensson K, Alfoldi P, Hajos M, Rubicsek G, Johansson AM, Carlsson A, Obal F Jr (1987) Dopamine autoreceptor antagonists: effects on sleep-wake activity in the rat. Pharmacol Biochem Behav 26:123–129

    Article  CAS  PubMed  Google Scholar 

  • Wallace TL, Gudelsky GA, Vorhees CV (2001) Alterations in diurnal and nocturnal locomotor activity in rats treated with a monoamine-depleting regimen of methamphetamine or 3,4-methylenedioxymethamphetamine. Psychopharmacology 153:321–326

    Article  CAS  PubMed  Google Scholar 

  • Webb E, Ashton CH, Kelly P, Kamali F (1996) Alcohol and drug use in UK university students. Lancet 348:922–925

    CAS  PubMed  Google Scholar 

  • Yamamoto BK, Nash JF, Gudelsky GA (1995) Modulation of methylenedioxymethamphetamine-induced striatal dopamine release by the interaction between serotonin and gamma-aminobutyric acid in the substantia nigra. J Pharmacol Exp Ther 273:1063–1070

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fifth Framework Programme of the European Community, QLG3-CT-2002-00809, the Hungarian Research Fund Grant T020500 and M27976, the Ministry of Welfare Research Grant 058/2003 and the Fund Management of Ministry of Education OMFB 01926/2002. The experiments complied with the Hungarian Governmental Regulation about animal studies (presented December 31, 1998) and the United Kingdom Animals Act (1986). We thank Professor Franz Halberg and Dr. Germaine Cornelissen (Chronobiology Laboratories, University of Minnesota, Minneapolis, Minn., USA) for their expert advice regarding parameters of circadian activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyorgy Bagdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, B., Molnar, E., Jakus, R. et al. Effects of a single dose of 3,4-methylenedioxymethamphetamine on circadian patterns, motor activity and sleep in drug-naive rats and rats previously exposed to MDMA. Psychopharmacology 173, 296–309 (2004). https://doi.org/10.1007/s00213-004-1787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1787-9

Keywords

Navigation