The influence on cognition of the interactions between lecithin, carnitine and carbohydrate

Abstract

It is accepted that acetylcholine-mediated neurones modulate memory. As lecithin, carnitine and glucose all influence acetylcholine metabolism, the possibility of synergistic interactions was considered. Four hundred young adult females randomly, and under a double-blind procedure, received capsules for 3 days that contained a placebo, lecithin (1.6 g/day), carnitine (500 mg/day) or carnitine plus lecithin. A battery of cognitive tests was administered prior to taking the capsules, after 3 days of taking the supplements, and for a third time after consuming either a glucose drink or a placebo. Reaction times were more rapid when carnitine and a glucose drink were taken together. Memory was enhanced in those taking a glucose rather than placebo drink. Neither mood nor the ability to sustain attention were influenced by these procedures. The hypothesis that memory would be facilitated by offering supplements of lecithin, carnitine and glucose was not supported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Angelucci L, Patacchioli FR, Tagialatela G, Maccari S, Ramacci MT, Ghirardi O (1986a) Brain glucocorticoid receptor and adrenocortical activity are sensitive markers of senescence-retarding treatments in the rat. In: Biggio G, Spano PF, Toffano G, Gessa GL (eds) Modulation of central and peripheral transmitter function. Fidia research series. Symposia in neuroscience, volume 3. Springer, Berlin Heidelberg New York, pp 338–343

  2. Angelucci L, Ghirardi O, Patacchioli FR, Ramacci MT (1986b) Disinhibition of the hypothalamo-pituitary-adrenocortical axis as a marker of brain aging in the rat: a model for the study of anti-aging agents. Clin Neuropharmacol 9:104–106

    Google Scholar 

  3. Bartus RT, Dean RL, Goas JA, et al (1980) Age-related changes in passive avoidance retention: modulation with dietary choline. Science 209:301–303

    CAS  PubMed  Google Scholar 

  4. Benton D (1990) The impact of increasing blood glucose on psychological functioning. Biol Psychol 30:13–19

    Article  CAS  PubMed  Google Scholar 

  5. Benton D, Owens D (1993) Blood glucose and human memory. Psychopharmacology 113:83–88

    CAS  PubMed  Google Scholar 

  6. Benton D, Brett V, Brain PF (1987) Glucose improves attention and reaction to frustration in children. Biol Psychol 24:95–100

    Article  CAS  PubMed  Google Scholar 

  7. Benton D, Owens D, Parker P (1994) Blood glucose memory and attention. Neuropsychologia 32:595–607

    CAS  PubMed  Google Scholar 

  8. Benton D, Ruffin M-P, Lassel T, Nabb S, Messaoudi N, Vinoy S, Desor D, Lang V (2003) The delivery rate of dietary carbohydrates affects cognitive performances in both rats and humans. Psychopharmacology 166:86–90

    CAS  PubMed  Google Scholar 

  9. Blum K, Seifter E, Seifter J (1971) The pharmacology of d- and l-carnitine and d- and l-acetylcarnitine: comparison with choline and acetylcholine. J Pharmacol Exp Ther 178:331–338

    CAS  PubMed  Google Scholar 

  10. Borum PR (1983) Carnitine. Ann Rev Nutr 3:233–259

    Article  CAS  Google Scholar 

  11. Capriolli A, Ghirardi O, Ramacci MT, Angelucci L (1990) Age-dependent deficits in radial maze performance in the rat: effect of chronic treatment with acetyl-l-carnitine. Prog Neuropsychopharmacol Biol Psychiatry 14:359–369

    Article  PubMed  Google Scholar 

  12. Craft S, Zallen G, Baker LD (1992) Glucose and memory in mild senile dementia of the Alzheimer type. J Clin Exp Neuropsychol 14:253–267

    CAS  PubMed  Google Scholar 

  13. Craft S, Dagogo-Jack SE, Wiethop BV, Murphy C, Nevins RT, Fleischman S, Rice V, Newcomer JW, Cryer PE (1993) The effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behav Neurosci 107:926–940

    Article  CAS  PubMed  Google Scholar 

  14. Drachman DA, Glosser G, Fleming P, Longenecker G (1982) Memory decline in the aged: treatment with lecithin and physostigmine. Neurology 32:944–950

    CAS  PubMed  Google Scholar 

  15. Durkin TP, Messier C, de Boer P, Westerink BHC (1992) Raised glucose levels enhance scopolamine-induced acetylcholine overflow from the hippocampus: an in vivo microdialysis study in the rat. Behav Brain Res 49:181–188

    CAS  PubMed  Google Scholar 

  16. Eysenck HJ (1987) Speed of information processing, reaction time and the theory of intelligence. In: Vernon PA (ed) Speed of information-processing and intelligence. Ablex Publishing Corporation, Norwood, NJ, pp 21–67

  17. Falchetto S, Kato G, Provine L (1971) The action of carnitines on cortical neurons. Can J Physiol Pharmacol 49:1–7

    CAS  PubMed  Google Scholar 

  18. Freo U, Pizzolato G, Dam M, Ori C, Battistin L (2002) A short review of cognitive and functional neuroimaging studies of cholinergic drugs: implications for therapeutic potentials. J Neural Transm 109:857–870

    Article  CAS  PubMed  Google Scholar 

  19. Gonder-Frederick L, Hall JL, Vogt J, Cox DJ, Green J, Gold PE (1987) Memory enhancement in elderly humans: effects of glucose ingestion. Physiol Behav 41:503–504

    CAS  PubMed  Google Scholar 

  20. Hall JL, Gonder-Frederick LA, Chewning WW, Silveira J, Gold PE (1989) Glucose enhancement of performance on memory tests in young and aged humans. Neuropsychologia 27:1129–1138

    CAS  PubMed  Google Scholar 

  21. Harris CM, Dysken MW, Fovall P, Davis JM (1983) Effect of lecithin on memory in normal adults. Am J Psychiatry 140:1010–1012

    CAS  PubMed  Google Scholar 

  22. Higgins JP, Flicker, L (2000) Lecithin for dementia and cognitive impairment. Cochrane Database Syst Rev CD 001015

  23. Jensen AR (1987) Individual differences in the Hick paradigm. In: Vernon PA (ed) Speed of information-processing and intelligence. Ablex Publishing Corporation, Norwood, NJ, pp 101–175

  24. Keul J, Huber G, Lehmann M, Berg A, Jaakob EF (1982) EinfluB von Dextrose auf Fahrleisstunggg Konzentrationnsfahigkeit, Kreislauf und Stoffwechsel im Kraaftfahrzeug-Simulator (Doppelblindstudiee im cross-over-design). Aktuelle Ernährungsmedizin 7:7–14

    Google Scholar 

  25. Kuntscherova J (1972) Effect of short-term starvation and choline on the acetylcholine content of organs of albino rats. Physiol Bohemoslov 21:655–660

    CAS  PubMed  Google Scholar 

  26. Ladd SL, Sommer SA, LaBerge S, Toscano W (1993) Effect of phosphatidylcholine on explicit memory. Clin Neuropharmacol 6:540–549

    Google Scholar 

  27. Lapp JE (1981) Effects of glycemic alterations and noun imagery on the learning of paired associates. J Learn Disabil 14:35–38

    CAS  PubMed  Google Scholar 

  28. Manning CA, Hall JL, Gold PE (1990) Glucose effects on memory and other neuropsychological tests in elderly humans. Psychol Sci 1:307–311

    Google Scholar 

  29. Markowska AL, Ingram DK, Barnes CA, Spangler EL, Lemken VJ, Kametani H, Yee W, Olton DS (1990) Acetyl-l-carnitine 1: effects on mortality, pathology and sensory-motor performance in aging rats. Neurobiol Aging 11:491–498

    Article  CAS  PubMed  Google Scholar 

  30. Marquis NR, Fritiz IB (1965) The distribution of carnitine, acetyl-carnitine and carnitine acetyl transferase in rat tissues. J Biol Chem 240:2193–2196

    CAS  PubMed  Google Scholar 

  31. McNair DM, Lorr M, Droppleman LF (1981) Profile of mood states. Educational and Industrial Testing Service, San Diego, California

  32. Messer WS (2002) Cholinergic agonists and the treatment of Alzheimer’s disease. Curr Top Med Chem 2:353–358

    CAS  PubMed  Google Scholar 

  33. Messier C, Durkin T, Mrabet O, Destrade C (1990) Memory-improving action of glucose: indirect evidence for a facilitation of hippocampal acetylcholine synthesis. Behav Brain Res 39:135–143

    Article  CAS  PubMed  Google Scholar 

  34. Montgomery SA, Tal LJ, Amrein R (2003) Meta-analysis of double blind randomised controlled clinical trials of acetyl-l-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 18:61–71

    Article  PubMed  Google Scholar 

  35. Moser L, Plum H, Buckmann M (1983) Der Einflub von Dextrose auf Diet psychophysische Leistungsfahgkeir des Autofahrers. Aktuelle Ernährungsmedizin 8:247–249

    Google Scholar 

  36. Nobilio D, Faaricelli A, Colangelo U, Delre ML, Bazzaano S, Onofrj M, Gambi D (1990) The effect of levo-acetyl-carnitine on P300 potential. Curr Ther Res 47:267–277

    CAS  Google Scholar 

  37. Onofrj M, Bodis-Wollner I, Pola P, Calvani M (1963) Central cholinergic effects of levo-acetylcarntine. Drugs Exp Clin Res 2:161–169

    Google Scholar 

  38. Onofrj M, Ghilardi MF, Faricelli A, Bodis Wollner I, Calvani M (1987) Effect of levoacetylcarnitine on P300-like potential of the normal monkey. Drugs Exp Clin Res 13:407–415

    CAS  PubMed  Google Scholar 

  39. Paivio A, Yuille JC, Madigan SA (1968) Concreteness imagery and meaningfulness values for 925 nouns. J Exp Psychol 76:1–25

    Google Scholar 

  40. Perez Polo JR, Werrbach-Perez K, Ramacci MT (1988) Role of nerve growth factors in neurological disease. In: Agnoli A, Cahn J, Lassen N (eds) Senile dementia. Libbey, London, pp 15–25

  41. Pettegrew JW, Levein J, McClure RJ (2000) Acetyl-l-carnitine physical–chemical, metabolic and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry 5:616–632

    Article  CAS  PubMed  Google Scholar 

  42. Safford F, Baumel B (1994) Testing the effects of dietary lecithin on memory in the elderly: an example of social work/medical research collaboration. Res Soc Work Pract 4:349–358

    Google Scholar 

  43. Shug AL, Schmidt MJ, Golden GT, Fariello RG (1982) The distribution and role of carnitine in the mammalian brain. Life Sci 31:2869–2874

    Article  CAS  PubMed  Google Scholar 

  44. Tempesta E, Janiri L, Pirrongelli C, Ancona L (1982) The effect of microiontophoretically applied d,l-, l- and d-acetylcarnitine on single central neurons. Neuropharmacology 21:1207–1210

    Article  CAS  PubMed  Google Scholar 

  45. Thomitzek WD (1963) Die Wirkung von Derivaten des (−) und (+) Carnitins und Azetylcarnitins auf die Bildung von Azetylcholin. Biochem Pharmacol 12:161

    Google Scholar 

  46. Wurtman RJ, Hirsch MJ, Growdon JH (1977) Lecithin consumption raises serum-free-choline levels. Lancet 2:68–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Benton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benton, D., Donohoe, R.T. The influence on cognition of the interactions between lecithin, carnitine and carbohydrate. Psychopharmacology 175, 84–91 (2004). https://doi.org/10.1007/s00213-004-1773-2

Download citation

Keywords

  • Carnitine
  • Glucose
  • Lecithin
  • Memory
  • Reaction times