Skip to main content
Log in

Differential region-specific regulation of central α1-adrenoceptor binding following chronic haloperidol and clozapine administration in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Many antipsychotics exhibit potent anti-α1-adrenergic receptor activity, which has been suggested to contribute to typical and atypical antipsychotic effects and to the production of centrally mediated side effects.

Objectives

To assess the relative contribution of α1-adrenoceptors to the mechanism of action of haloperidol and clozapine and to identify possible sites of action.

Methods

We examined the effect of chronic haloperidol and clozapine treatment on α1-adrenoceptor characteristics in several rat brain regions. For comparison, D2-like dopamine receptor density in the striatum was also determined.

Results

Clozapine administration (25 mg/kg/day i.p., 21 days) significantly increased α1-adrenoceptor density in the frontal cortex (44%), remaining cortex (49%) and thalamus (93%) but binding levels in the hippocampus and spinal cord were unchanged relative to vehicle. Haloperidol treatment (1.5 mg/kg/day i.p., 21 days) also significantly increased the density of α1-adrenoceptor binding in the thalamus (73%), but had no effect on α1-adrenoceptor levels in any other region examined. α1-Adrenoceptor affinity in the cortex was not significantly altered by either antipsychotic treatment. Haloperidol, in contrast to clozapine, significantly upregulated dopamine D2-like binding in the striatum.

Conclusions

Central α1-adrenoceptors are differentially regulated after chronic haloperidol and clozapine treatment. It is suggested that thalamic α1-adrenoceptors may represent a common anatomical locus contributing to the antipsychotic activity and/or α1-adrenoceptor centrally mediated side effects of both drugs, whereas the selective upregulation of cortical α1-adrenoceptor density by clozapine may contribute, in part, to its superior atypical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnsten AF, Steere JC, Hunt RD (1996) The contribution of alpha-2 noradrenergic mechanisms to prefrontal cortical cognitive function: potential significance for attention deficit hyperactivity disorder. Arch Gen Psychiatry 53:448–455

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM (1999) Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry 45:26–31

    Article  CAS  PubMed  Google Scholar 

  • Bakshi VP, Geyer MA (1997) Phencyclidine-induced deficits in prepulse inhibition of startle are blocked by prazosin, an alpha-1 noradrenergic antagonist. J Pharmacol Exp Ther 283:666–674

    CAS  PubMed  Google Scholar 

  • Baldessarini RJ, Huston-Lyons D, Campbell A, Marsh E, Cohen M (1992) Do central antiadrenergic actions contribute to the atypical properties of clozapine? Br J Psychiatry Suppl 17:12–16

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry 47:181–188

    CAS  PubMed  Google Scholar 

  • Breier A (1994) Clozapine and noradrenergic function: support for a novel hypothesis for superior efficacy. J Clin Psychiatry 55:122–125

    PubMed  Google Scholar 

  • Carasso BS, Bakshi VP, Geyer MA (1998) Disruption in prepulse inhibition after alpha-1 adrenoceptor stimulation in rats. Neuropharmacology 37:401–404

    Article  CAS  PubMed  Google Scholar 

  • Chaki S, Funakoshi T, Yoshikawa R, Okuyama S, Kumagai T, Nakazato A, Nagamine M, Tomisawa K (1999) In vivo receptor occupancy of NRA0045, a putative atypical antipsychotic, in rats. Neuropharmacology 38:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Cohen BM, Lipinski JF (1986) In vivo potencies of antipsychotic drugs in blocking alpha-1 noradrenergic and dopamine D2 receptors: implications for drug mechanisms of action. Life Sci 39:2571–2580

    Article  CAS  PubMed  Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. J Neurochem 13:655–669

    CAS  PubMed  Google Scholar 

  • Hancock AA (1996) Alpha-1 adrenoceptor subtypes: a synopsis of their pharmacology and molecular biology. Drug Dev Res 39:54–107

    Article  CAS  Google Scholar 

  • Hanft G, Gross G (1989) Subclassification of alpha-1 adrenoceptor recognition sites by urapidil derivatives and other selective antagonists. Br J Pharmacol 97:691–700

    CAS  PubMed  Google Scholar 

  • Hommer DW, Zahn TP, Picard D, Van Kammen DP (1984) Prazosin, a specific alpha-1 noradrenergic receptor antagonist has no effect on symptoms but increases autonomic arousal in schizophrenic patients. Psychiatry Res 11:193–204

    CAS  PubMed  Google Scholar 

  • Johnston RD, Iuvone PM, Minneman KP (1987) Regulation of alpha-1 adrenergic receptor density and functional responsiveness in rat brain. J Pharmacol Exp Ther 242:842–849

    PubMed  Google Scholar 

  • Jones LS, Gauer LL, Davis JN (1985) Anatomy of brain alpha-1 adrenergic receptors: in vitro autoradiography with [125I]-HEAT. J Comp Neurol 231:190–208

    CAS  PubMed  Google Scholar 

  • Kane J, Honigfeld G, Siger J, Meltzer H (1988) Clozapine for the treatment resistant schizophrenic. Arch Gen Psychiatry 45:789–796

    CAS  PubMed  Google Scholar 

  • Kapur S, Vanderspek SC, Brownlee BA, Nobrega JN (2003) Antipsychotic dosing in preclinical models is often unrepresentative of the clinical condition—a suggested solution based on in vivo occupancy. J Pharmacol Exp Ther 305:625–631

    Article  CAS  PubMed  Google Scholar 

  • Kinon BJ, Lieberman JA (1996) Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology 124:2–34

    Google Scholar 

  • Kuoppamaki M, Seppala T, Syvalahti E, Hietala J (1993) Chronic clozapine treatment decreases 5-hydroxytryptamine receptor density in the rat choroid plexus: comparison with haloperidol. J Pharmacol Exp Ther 264:1262–1267

    CAS  PubMed  Google Scholar 

  • Kuoppamaki M, Palvimaki E-P, Hietala J, Syvalahti E (1995) Differential regulation of rat 5-HT2A and 5-HT2C receptors after chronic treatment with clozapine, chlorpromazine and three putative atypical antipsychotic drugs. Neuropharmacology 13:139–150

    CAS  Google Scholar 

  • Mathe JM, Nomikos GG, Hildebrand BE, Hertel P, Svensson TH (1996) Prazosin inhibits MK-801-induced hyperlocomotion and dopamine release in the nucleus accumbens. Eur J Pharmacol 309:1–11

    CAS  PubMed  Google Scholar 

  • Muller P, Seeman P (1977) Brain neurotransmitter receptors after long-term haloperidol: dopamine, acetylcholine, serotonin, alpha-noradrenergic and naloxone receptors. Life Sci 21:1751–1758

    CAS  PubMed  Google Scholar 

  • Nutt DJ, Lalies MD, Lione LA, Hudson AL (1997) Noradrenergic mechanisms in the prefrontal cortex. J Psychopharmacol 11:163–168

    Google Scholar 

  • O’Malley SS, Chen TB, Francis BE, Gibson RE, Burns HD, DiSalvo J, Bayne ML, Wetzel JM, Nagarathnam D, Marzabadi M, Gluchowski C, Chang RSL (1998) Characterization of specific binding of [125I]L-762,459, a selective alpha-1A adrenoceptor radioligand to rat and human tissues. Eur J Pharmacol 348:287–295

    Article  CAS  PubMed  Google Scholar 

  • Prinssen EPM, Ellenbroek BA, Cools AR (1994) Combined antagonism of adrenoceptors and dopamine and 5-HT receptors underlies the atypical profile of clozapine. Eur J Pharmacol 262:167–170

    Article  CAS  PubMed  Google Scholar 

  • Puumala T, Riekkinen P, Sirvio J (1997) Modulation of vigilance and behavioural activation by alpha-1 adrenoceptors in the rat. Pharmacol Biochem Behav 56:705–712

    CAS  PubMed  Google Scholar 

  • Reynolds GP, Garrett N, Rupniak N, Jenner P, Marsden CD (1983) Chronic clozapine treatment of rats downregulates cortical 5-HT2 receptors. Eur J Pharmacol 89:325–326

    Article  CAS  PubMed  Google Scholar 

  • Richelson E, Nelson A (1984) Antagonism by neuroleptics of neurotransmitter receptors of normal human brain in vitro. Eur J Pharmacol 103:197–204

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AW, Lebel LA, Howard HR, Zorn SH (2001) Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Psychopharmacol 425:197–201

    Article  CAS  Google Scholar 

  • Schotte A, Janssen PFM, Gommeren W, Luyten WHML, VanGompel P, Lesage AS, DeLoore K, Leysen JE (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124:57–73

    CAS  PubMed  Google Scholar 

  • Sirvio J, MacDonald E (1999) Central alpha-1 adrenoceptors: their role in the modulation of attention and memory formation. Pharmacol Ther 83:49–65

    Article  PubMed  Google Scholar 

  • Tarazi FI, Florijn WJ, Creese I (1997a) Differential regulation of dopamine receptors following chronic typical and atypical antipsychotic drug treatment. Neuroscience 78:985–996

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Yeghiayan SK, Baldessarini RJ, Kula NS, Neumeyer JL (1997b) Long-term effects of S(+)N-n-propylnorapomorphine compared with typical and atypical antipsychotics: differential increases of cerebrocortical D2-like and striatolimbic D4-like dopamine receptors. Neuropsychopharmacology 17:186–196

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Campbell A, Yeghiayan SK, Baldessarini RJ (1998) Localisation of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: comparison of D1-, D2- and D4-like receptors. Neuroscience 83:169–176

    Article  CAS  PubMed  Google Scholar 

  • Wadenberg M-LG, Hicks PB (1999) The conditioned avoidance response test re-evaluated: is it a sensitive test for the detection of potentially atypical antipsychotics? Neurosci Biobehav Rev 23:851–862

    CAS  PubMed  Google Scholar 

  • Wagstaff AJ, Bryson HM (1995) Clozapine: a review of its pharmacological properties and therapeutic use in patients with schizophrenia who are unresponsive to or intolerant to classical antipsychotic agents. CNS Drugs 4:370–400

    CAS  Google Scholar 

  • Westerink BCH, De Boer P, De Vries JB, Kruse C, Long S (1998) Antipsychotic drugs induce similar effects on the release of dopamine and noradrenaline in the medial prefrontal cortex of the rat brain. Eur J Pharmacol 361:27–33

    CAS  PubMed  Google Scholar 

  • Wilson KM, Minneman KP (1989) Regional variations in alpha-1 adrenergic receptor subtypes in rat brain. J Neurochem 53:1782–1786

    CAS  PubMed  Google Scholar 

  • Yang M, Verfurth F, Buscher R, Michel MC (1997) Is the alpha-1D adrenoceptor protein detectable in rat tissues? Naunyn Schmiedebergs Arch Pharmacol 355:438–446

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Novartis for the generous gift of clozapine and Professor Brian Leonard for helpful discussions. T.D.W. Mawhinney was sponsored by a grant from PPP Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Cahir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahir, M., Mawhinney, T. & King, D.J. Differential region-specific regulation of central α1-adrenoceptor binding following chronic haloperidol and clozapine administration in the rat. Psychopharmacology 172, 196–201 (2004). https://doi.org/10.1007/s00213-003-1639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1639-z

Keywords

Navigation