Skip to main content
Log in

Effect of antipsychotics on cortical inhibition using transcranial magnetic stimulation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Previous studies suggest that antipsychotic medications may alter cortical inhibition (CI). The current study was designed to determine if typical or atypical antipsychotics indeed alter CI in healthy subjects using three CI paradigms as measured with transcranial magnetic stimulation (TMS): short interval intracortical inhibition (SICI), cortical silent period (CSP) and transcallosal inhibition (TCI). CI was measured before, 6 and 24 h after being randomly assigned to receive a single dose of 2 mg haloperidol (n=8), 10 mg olanzapine (n=10) or placebo (n=9). There was no significant effect on any measure of CI at 6 and 24 h after receiving olanzapine, haloperidol or placebo. Moreover, no significant change in the motor threshold was observed across the three medication groups. Therefore, single administration of an antipsychotic has no effect on CI or resting motor threshold. Whether chronic, repeated administration of antipsychotics has effects on CI requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders [see comments]. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res 85:119–146

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97

    Article  CAS  PubMed  Google Scholar 

  • Boroojerdi B, Topper R, Foltys H, Meincke U (1999) Transcallosal inhibition and motor conduction studies in patients with schizophrenia using transcranial magnetic stimulation. Br J Psychiatry 175:375–379

    Article  CAS  PubMed  Google Scholar 

  • Cantello R, Gianelli M, Civardi C, Mutani R (1992) Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology 42:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Samii A, Canos M, Wassermann EM, Hallett M (1997) Effects of phenytoin on cortical excitability in humans. Neurology 49:881–883

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Tam A, Butefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG (1998) Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80:2870–2881

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542

    Article  CAS  PubMed  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S (2002) Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry 59:347–354

    Article  PubMed  Google Scholar 

  • del Rio MR, DeFelipe J (1997) Colocalization of parvalbumin and calbindin D-28 k in neurons including chandelier cells of the human temporal neocortex. J Chem Neuroanat 12:165–173

    Article  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (1999) Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res 124:520–524

    Article  Google Scholar 

  • Farnbach-Pralong D, Bradbury R, Copolov D, Dean B (1998) Clozapine and olanzapine treatment decreases rat cortical and limbic GABA(A) receptors. Eur J Pharmacol 349:R7–8

    Article  CAS  PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    Article  CAS  PubMed  Google Scholar 

  • Greenberg BD, Ziemann U, Cora-Locatelli G, Harmon A, Murphy DL, Keel JC, Wassermann EM (2000) Altered cortical excitability in obsessive-compulsive disorder. Neurology 54:142–147

    Article  CAS  PubMed  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A (1996) The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol 101:478–482

    CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: a new hypothesis. Am J Psychiatry 158:360–369

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Zipursky RB, Remington G, Jones C, DaSilva J, Wilson AA, Houle S (1998) 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry 155:921–928

    Article  CAS  PubMed  Google Scholar 

  • Krnjevic K (1997) Role of GABA in cerebral cortex. Can J Physiol Pharmacol 75:439–451

    Article  CAS  PubMed  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519

    Article  CAS  Google Scholar 

  • Liepert J, Schwenkreis P, Tegenthoff M, Malin JP (1997) The glutamate antagonist riluzole suppresses intracortical facilitation. J Neural Transm 104:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Moll GH, Heinrich H, Wischer S, Tergau F, Paulus W, Rothenberger A (1999) Motor system excitability in healthy children: developmental aspects from transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:243–249

    CAS  PubMed  Google Scholar 

  • Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordstrom AL, Farde L, Halldin C (1992) Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology 106:433–438

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Retaux S, Besson MJ, Penit-Soria J (1991) Synergism between D1 and D2 dopamine receptors in the inhibition of the evoked release of [3H]GABA in the rat prefrontal cortex. Neuroscience 43:323–329

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Inzelberg R, Rothwell JC (1995) Changes in excitability of motor cortical circuitry in patients with Parkinson's disease. Ann Neurol 37:181–188

    Article  CAS  PubMed  Google Scholar 

  • Sanger TD, Garg RR, Chen R (2001) Interactions between two different inhibitory systems in the human motor cortex. J Physiol 530:307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smiley JF, Williams SM, Szigeti K, Goldman-Rakic PS (1992) Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex. J Comp Neurol 321:325–335

    Article  CAS  PubMed  Google Scholar 

  • Spitzer RL, Williams JBW, Gibbon M (1995) Structured clinical interview for DSM-IV (SCID). Biometrics Research

  • Tergau F, Wanschura V, Canelo M, Wischer S, Wassermann EM, Ziemann U, Paulus W (1999) Complete suppression of voluntary motor drive during the silent period after transcranial magnetic stimulation. Exp Brain Res 124:447–454

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Potkin SG, Ploszaj DI (1992) Clozapine improves sensory gating more than Haldol. [Abstract]. American Psychiatric Association Abstracts:156

    Google Scholar 

  • Yee CM, Nuechterlein KH, Morris SE, White PM (1998) P50 suppression in recent-onset schizophrenia: clinical correlates and risperidone effects. J Abnorm Psychol 107:691–698

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U RJ, Ridding MC (1996) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond) 493:873–881

    Article  Google Scholar 

  • Ziemann U, Bruns D, Paulus W (1996a) Enhancement of human motor cortex inhibition by the dopamine receptor agonist pergolide: evidence from transcranial magnetic stimulation. Neurosci Lett 208:187–190

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996b) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996c) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study [see comments]. Ann Neurol 40:367–378

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Paulus W, Rothenberger A (1997a) Decreased motor inhibition in Tourette's disorder: evidence from transcranial magnetic stimulation. Am J Psychiatry 154:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Tergau F, Bruns D, Baudewig J, Paulus W (1997b) Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroencephalogr Clin Neurophysiol 105:430–437

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Chen R, Cohen LG, Hallett M (1998) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many thanks to Jenny Chao and Jeff Logan for their invaluable assistance with this project. Dr. Daskalakis was supported through a research training fellowship from the Ontario Mental Health Foundation, the Canadian Psychiatric Research Foundation and is a Canadian Institutes of Health Research INMHA Clinician Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafiris J. Daskalakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daskalakis, Z.J., Christensen, B.K., Chen, R. et al. Effect of antipsychotics on cortical inhibition using transcranial magnetic stimulation. Psychopharmacology 170, 255–262 (2003). https://doi.org/10.1007/s00213-003-1548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1548-1

Keywords

Navigation