Skip to main content
Log in

On the role of noradrenaline in psychostimulant-induced psychomotor activity and sensitization

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Psychostimulant drugs exert their behavioral effects primarily through enhancement of monoaminergic neurotransmission. Augmented dopamine activity is thought to play a critical role in the psychomotor stimulant effects of amphetamine and cocaine, as well as in the development of long-term behavioral sensitization evoked by repeated exposure to amphetamine. However, despite the fact that brain dopamine and noradrenaline systems are closely interconnected, the extent to which noradrenergic transmission contributes to these behavioral effects of psychostimulants is a relatively unexplored issue.

Objectives

By inhibiting noradrenergic neurotransmission with the α2-adrenoceptor agonist clonidine, the α1-antagonist prazosin and the β-antagonist propranolol, we investigated the involvement of noradrenaline neurotransmission in the psychomotor stimulant and long-term sensitizing effects of d-amphetamine and cocaine in rats.

Methods

Clonidine (0.003–0.1 mg/kg), prazosin (0.1–3.0 mg/kg) and propranolol (1.0–3.0 mg/kg) were administered prior to d-amphetamine (1.0 mg/kg), cocaine (15 mg/kg) or apomorphine (1.0 mg/kg) and psychomotor activity was measured. In separate studies, clonidine (0.03 mg/kg), prazosin (1.0 mg/kg) or propranolol (3.0 mg/kg) were co-administered with d-amphetamine (2.5 mg/kg) or cocaine (30 mg/kg) for 5 days, and locomotor sensitization was assessed 3 weeks post-treatment.

Results

The psychomotor stimulant effect of d-amphetamine, but not that of cocaine or apomorphine, was dose-dependently inhibited by clonidine and prazosin, and enhanced by propranolol. Clonidine, prazosin, and propranolol did not influence the induction of sensitization by amphetamine or cocaine.

Conclusions

Enhancement of synaptic noradrenaline concentrations contributes to the psychomotor stimulant effect of d-amphetamine, but not cocaine or apomorphine. In addition, noradrenergic neurotransmission is not critically involved in the induction of psychostimulant sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Aghajanian GK, VanderMaelen CP (1982) α2-Adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215:1394–1396

    CAS  PubMed  Google Scholar 

  • Amalric M, Koob GF (1993) Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. Prog Brain Res 99:209–226

    CAS  PubMed  Google Scholar 

  • Anagnostaras SG, Robinson TE (1996) Senzitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav Neurosci 110:1397–1414

    CAS  PubMed  Google Scholar 

  • Badiani A, Oates MM, Day HEW, Watson SJ, Akil H, Robinson TE (1998) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. J Neurosci 18:10579–10593

    CAS  PubMed  Google Scholar 

  • Berman DE, Dudai Y (2001) Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291:2417–2419

    Article  CAS  PubMed  Google Scholar 

  • Berthold CWI, Gonzales RA, Moerschbacher JM (1992) Prazosin attenuates the effects of cocaine on motor activity but not on schedule-controlled behavior in the rat. Pharmacol Biochem Behav 43:111–115

    Article  CAS  PubMed  Google Scholar 

  • Bjijou Y, Stinus L, Le Moal M, Cador M (1996) Evidence for selective involvement of dopamine D1 receptors of the ventral tegmental area in the behavioral sensitization induced by intra-ventral tegmental area injections of d-amphetamine. J Pharmacol Exp Ther 277:1177–1187

    CAS  PubMed  Google Scholar 

  • Blanc G, Trovero F, Vezina P, Hervé D, Godeheu A-M, Glowinski J, Tassin JP (1994) Blockade of prefronto-cortical α1-adrenergic receptors prevents locomotor hyperactivity induced by subcortical d-amphetamine injection. Eur J Neurosci 6:293–298

    CAS  PubMed  Google Scholar 

  • Braszko JJ, Wisniewski K (1990) Alpha1 and alpha2-adrenergic receptor blockade influences angiotensin II facilitation of avoidance behavior and stereotypy in rats. Psychoneuroendocrinology 15:239–252

    Article  CAS  PubMed  Google Scholar 

  • Cador M, Bjijou Y, Stinus L (1995) Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience 65:385–395

    Article  CAS  PubMed  Google Scholar 

  • Cahill L, Prins B, Weber M, McGaugh JL (1994) Beta-adrenergic activation and memory for emotional events. Nature 371:702–704

    CAS  PubMed  Google Scholar 

  • Carey RJ, DePalma G, Damianopoulos E (2001) Cocaine and serotonin: a role for the 5-HT1A receptor site in the mediation of cocaine stimulant effects. Behav Brain Res 126:127–133

    Article  CAS  PubMed  Google Scholar 

  • Castanon N, Scearce-Levie K, Lucas JJ, Rocha B, Hen R (2000) Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacol Biochem Behav 67:559–566

    CAS  PubMed  Google Scholar 

  • Cervo L, Bendotti C, Tarizzo G, Cagnotto A, Skorupska M, Mennini T, Samanin R (1994) Potential antidepressant properties of SR 57746A, a novel compound with selectivity and high affinity for 5-HT1A receptors. Eur J Pharmacol 253:139–147

    Article  CAS  PubMed  Google Scholar 

  • Cornish JL, Kalivas PW (2001) Repeated cocaine administration into the rat ventral tegmental area produces behavioral sensitization to a systemic cocaine challenge. Behav Brain Res 126:205–209

    Article  CAS  PubMed  Google Scholar 

  • Creese I, Iversen SD (1974) The role of forebrain dopamine systems in amphetamine induced stereotyped behavior in the rat. Psychopharmacologia 39:345–357

    Google Scholar 

  • Crombag HS, Badiani A, Maren S, Robinson TE (2000) The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behav Brain Res 116:1–22

    Article  CAS  PubMed  Google Scholar 

  • Crombag HS, Badiani A, Chan J, Dell'Orco J, Dineen SP, Robinson TE (2001) The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology 24:680–690

    Article  CAS  PubMed  Google Scholar 

  • Darracq L, Blanc G, Glowinski J, Tassin JP (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of d-amphetamine. J Neurosci 18:2729–2739

    CAS  PubMed  Google Scholar 

  • De La Garza R II, Cunningham KA (2000) The effects of the 5-hydroxytryptamine1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin on spontaneous activity, cocaine-induced hyperactivity and behavioral sensitization: a microanalysis of locomotor activity. J Pharmacol Exp Ther 292:610–617

    Google Scholar 

  • De Vries TJ, Schoffelmeer ANM, Binnekade R, Mulder AH, Vanderschuren LJMJ (1998) Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur J Neurosci 10:3565–3571

    PubMed  Google Scholar 

  • Delfs JM, Schreiber L, Kelley AE (1990) Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. J Neurosci 10:303–310

    CAS  PubMed  Google Scholar 

  • Deroche V, Le Moal M, Piazza PV (1999) Cocaine self-administration increases the incentive motivational properties of the drug in rats. Eur J Neurosci 11:2731–2736

    CAS  PubMed  Google Scholar 

  • Dickinson SL, Gadie B, Tulloch IF (1988) α1- and α2-Adrenoceptor antagonists differentially influence locomotor and stereotyped behaviour induced by d-amphetamine and apomorphine in the rat. Psychopharmacology 96:521–527

    Google Scholar 

  • Drouin C, Blanc G, Villégier A-S, Glowinski J, Tassin JP (2002) Critical role of α1-adrenergic receptors in acute and sensitized locomotor effects of d-amphetamine, cocaine, and GBR 12783: influence of preexposure conditions and pharmacological characteristics. Synapse 43:51–61

    Article  CAS  PubMed  Google Scholar 

  • Filip M, Nowak E, Papla I (2001) On the role of serotonin2A/2C receptors in the sensitization to cocaine. J Physiol Pharmacol 52:471–481

    CAS  PubMed  Google Scholar 

  • Goodwin GM, Green AR (1985) A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol 84:743–753

    CAS  PubMed  Google Scholar 

  • Grenhoff J, Svensson TH (1993) Prazosin modulates the firing pattern of dopamine neurons in rat ventral tegmental area. Eur J Pharmacol 233:79–84

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Hedaya MA, Pan W-J, Kalivas P (1996) β-Adrenergic antagonism alters the behavioral and neurochemical responses to cocaine. Neuropsychopharmacology 14:195–204

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Characterization of the 5-HT1B recognition site in rat brain: binding studies with (−)[125I]iodocyanopindolol. Eur J Pharmacol 118:1–12

    Article  CAS  PubMed  Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Weber B (1988) Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J Pharmacol Exp Ther 245:1095–1102

    CAS  PubMed  Google Scholar 

  • Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal D (1989) Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 9:2051–2065

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Aizenstein ML (1991) Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. J Neurosci 11:2703–2712

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Todd PK (1997) Behavioral sensitization and extracellular dopamine responses to amphetamine after various treatments. Psychopharmacology 134:221–229

    Article  CAS  PubMed  Google Scholar 

  • Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71:155–234

    PubMed  Google Scholar 

  • Li Y, Wolf ME (1999) Can the "state-dependency" hypothesis explain prevention of amphetamine sensitization in rats by NMDA receptor antagonists? Psychopharmacology 141:351–361

    Google Scholar 

  • Mattingly BA, Hart TC, Lim K, Perkins C (1994) Selective antagonism of dopamine D1 and D2 receptors does not block the development of behavioral sensitization to cocaine. Psychopharmacology 114:239–242

    CAS  PubMed  Google Scholar 

  • Nicola SM, Malenka RC (1998) Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 79:1768–1776

    CAS  PubMed  Google Scholar 

  • Nomikos G, Damsma G, Wenkstern D, Fibiger HC (1990) In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis. Synapse 6:106–112

    CAS  PubMed  Google Scholar 

  • Nurse B, Russell VA, Taljaard JJ (1984) α2 and β-Adrenoceptor agonists modulate [3H]dopamine release from rat nucleus accumbens slices: implications for research into depression. Neurochem Res 9:1231–1238

    CAS  PubMed  Google Scholar 

  • Oksenberg D, Peroutka SJ (1988) Antagonism of 5-hydroxytryptamine1A (5-HT1A) receptor-mediated modulation of adenylate cyclase activity by pindolol and propranolol isomers. Biochem Pharmacol 37:3429–3433

    CAS  PubMed  Google Scholar 

  • Paladini CA, Fiorillo CD, Morikawa H, Williams JT (2001) Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nature Neurosci 4:275–281

    Article  CAS  Google Scholar 

  • Perugini M, Vezina P (1994) Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens amphetamine. J Pharmacol Exp Ther 270:690–696

    CAS  PubMed  Google Scholar 

  • Przegalinski E, Filip M (1997) Stimulation of serotonin (5-HT)1A receptors attenuates the locomotor, but not the discriminative, effects of amphetamine and cocaine in rats. Behav Pharmacol 8:699–706

    CAS  PubMed  Google Scholar 

  • Przegalinski E, Siwanowicz J, Nowak E, Papla I, Filip M (2001) Role of 5-HT1B receptors in the sensitization to amphetamine in mice. Eur J Pharmacol 422:91–99

    CAS  PubMed  Google Scholar 

  • Przybyslawski J, Roullet P, Sara SJ (2001) Attenuation of emotional and nonemotional memories after their reactivation: role of β-adrenergic receptors. J Neurosci 19:6623–6628

    Google Scholar 

  • Reith MEA, Li M-Y, Yan Q-S (1997) Extracellular dopamine, norepinephrine, and serotonin in the ventral tegmental area and nucleus accumbens of freely moving rats during intracerebral dialysis following systemic administration of cocaine and other uptake blockers. Psychopharmacology 134:309–317

    Article  CAS  PubMed  Google Scholar 

  • Ritz MC, Kuhar MJ (1989) Relationship between self-administration of amphetamine and monoamine receptors in brain: comparison with cocaine. J Pharmacol Exp Ther 248:1010–1017

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95 [Suppl 2]:S91–S117

  • Robinson TE, Browman KE, Crombag HS, Badiani A (1998) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci Biobehav Rev 22:347–354

    CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    CAS  PubMed  Google Scholar 

  • Sahakian BJ, Robbins TW, Morgan MJ, Iversen SD (1975) The effects of psychomotor stimulants on stereotypy and locomotor activity in socially-deprived and control rats. Brain Res 84:195–205

    CAS  PubMed  Google Scholar 

  • Schoffelmeer ANM, Mulder AH (1984) Presynaptic opiate receptor- and α2-adrenoceptor-mediated inhibition of noradrenaline release in the rat brain: role of hyperpolarization? Eur J Pharmacol 105:129–135

    Google Scholar 

  • Schoffelmeer ANM, De Vries TJ, Wardeh G, van de Ven HWM, Vanderschuren LJMJ (2002) Psychostimulant-induced behavioral sensitization depends on nicotinic receptor activation. J Neurosci 22:3269–3276

    CAS  PubMed  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 32:639–677

    Article  Google Scholar 

  • Shi W-X, Pun C-L, Zhang X-X, Jones MD, Bunney BS (2000) Dual effects of d-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 20:3504–3511

    CAS  PubMed  Google Scholar 

  • Snoddy AM, Tessel RE (1985) Prazosin: effect on psychomotor stimulant cues and locomotor activity in mice. Eur J Pharmacol 116:221–228

    CAS  PubMed  Google Scholar 

  • Stewart J, Vezina P (1989) Microinjections of Sch-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine. Brain Res 495:401–406

    CAS  PubMed  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    Google Scholar 

  • Suyama K, Dykstra KH, Masana MI, Manji HK, Potter WZ (1994) In vivo evidence that nonneuronal β-adrenoceptors as well as dopamine receptors contribute to cyclic AMP efflux in rat striatum. J Neurochem 62:1734–1740

    CAS  PubMed  Google Scholar 

  • Thiébot M-H, Kloczko J, Chermat R, Puech AJ, Soubrié P, Simon P (1981) Enhancement of cocaine-induced hyperactivity in mice by benzodiazepines: evidence for an interaction of GABAergic processes with catecholaminergic neurons? Eur J Pharmacol 76:335–343

    Google Scholar 

  • Uslaner J, Badiani A, Norton CS, Day HEW, Watson SJ, Akil H, Robinson TE (2001) Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur J Neurosci 13:1977–1983

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJMJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    CAS  PubMed  Google Scholar 

  • Vanderschuren LJMJ, Wardeh G, De Vries TJ, Mulder AH, Schoffelmeer ANM (1999) Opposing role of dopamine D1 and D2 receptors in modulation of rat nucleus accumbens noradrenaline release. J Neurosci 19:4123–4131

    CAS  PubMed  Google Scholar 

  • Vanderschuren LJMJ, Schoffelmeer ANM, Wardeh G, De Vries TJ (2000) Dissociable effects of the k-opioid receptor agonists bremazocine, U69593 and U50488H on locomotor activity and long-term behavioral sensitization induced by amphetamine and cocaine. Psychopharmacology 150:35–44

    Article  CAS  PubMed  Google Scholar 

  • Vezina P (1996) D1 dopamine receptor activation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J Neurosci 16:2411–2420

    CAS  PubMed  Google Scholar 

  • Wellman P, Ho D, Cepeda-Benito A, Bellinger L, Nation J (2002) Cocaine-induced hypophagia and hyperlocomotion in rats are attenuated by prazosin. Eur J Pharmacol 455:117–126

    Article  CAS  PubMed  Google Scholar 

  • Westerink BHC, Tuntler J, Damsma G, Rollema H, De Vries JB (1987) The use of tetrodotoxin for the characterization of drug-enhanced dopamine release in conscious rats studied by brain dialysis. Naunyn-Schmiedeberg's Arch Pharmacol 336:502–507

    Google Scholar 

  • White FJ, Joshi A, Koeltzow TE, Hu X-T (1998) Dopamine receptor antagonists fail to prevent induction of cocaine sensitization. Neuropsychopharmacology 18:26–40

    Google Scholar 

  • Wolf ME, Dahlin SL, Hu X-T, Xue C-J, White K (1995) Effects of lesions of prefrontal cortex, amygdala, or fornix on behavioral sensitization to amphetamine: comparison with N-methyl-d-aspartate antagonists. Neuroscience 69:417–439

    CAS  PubMed  Google Scholar 

  • Yavich L, Lappalainen R, Sirviö J, Haapalinna A, MacDonald E (1997) α2-Adrenergic control of dopamine overflow and metabolism in mouse striatum. Eur J Pharmacol 339:113–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Netherlands Organization for Scientific Research (NWO), grant no. 903-42-048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louk J. M. J. Vanderschuren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderschuren, L.J.M.J., Beemster, P. & Schoffelmeer, A.N.M. On the role of noradrenaline in psychostimulant-induced psychomotor activity and sensitization. Psychopharmacology 169, 176–185 (2003). https://doi.org/10.1007/s00213-003-1509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1509-8

Keywords

Navigation