Skip to main content
Log in

H3 receptor blockade by thioperamide enhances cognition in rats without inducing locomotor sensitization

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Attention deficit hyperactivity disorder (ADHD) is currently treated with psychomotor stimulants, including methylphenidate and amphetamine. Several adverse effects are associated with these drugs, however, such as agitation and abuse. H3 receptor antagonists are under clinical investigation for ADHD.

Objectives

To investigate the potential of thioperamide, a prototypical H3 receptor antagonist, to enhance learning and attention while inducing no effects on locomotor stimulation and sensitization, or alterations in ACTH levels.

Methods

Thioperamide (1, 3, 10, 30 mg/kg) was administered prior to testing in a multi-trial, inhibitory avoidance response in rat pups (five trials separated by 1 min) to evaluate attention/cognition. Locomotor sensitization and cross-sensitization was assessed following administration of methylphenidate (3 mg/kg), cocaine (10 mg/kg), or thioperamide (1, 3, 10 mg/kg).

Results

Thioperamide significantly enhanced performance of the five-trial inhibitory avoidance response with efficacy similar to that previously reported for methylphenidate. Administration of amphetamine, methylphenidate and cocaine produced significant locomotor sensitization, however. In contrast, thioperamide did not induce locomotor stimulation or sensitization, nor did it cross-sensitize to the stimulant effects of amphetamine or cocaine. The repeated administration of methylphenidate significantly elevated ACTH levels, while thioperamide did not affect this neuroendocrine endpoint.

Conclusions

H3 receptor blockade may offer a safer alternative to psychomotor stimulants for the treatment of ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A, B.
Fig. 6.

Similar content being viewed by others

References

  • Andersen SL, Teicher MH (2000) Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 24:137–141

    Google Scholar 

  • Arrang J-M, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz JC (1987) Highly potent and selective ligands for histamine H3 receptors. Nature 327:117–123

    CAS  PubMed  Google Scholar 

  • Badiani A, Browman KE, Robinson TE (1995) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res 674:291–298

    CAS  PubMed  Google Scholar 

  • Berke JDE (2000) Addiction, dopamine and the molecular mechanisms of memory. Neuron 25:515–532

    CAS  PubMed  Google Scholar 

  • Blandina P, Giorgetti M, Bartolini L, Cecchi M, Timmerman H, Leurs R, Pepeu G, Giovanni MG (1996) Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats. Br J Pharmacol 119:1656–1664

    CAS  PubMed  Google Scholar 

  • Boix F, Qiao SW, Kolpus T, Sagvolden T (1998) Chronic l-deprenyl treatment alters brain monoamine levels and reduces impulsiveness in an animal model of attention-deficit/hyperactivity disorder. Behav Brain Res 94:153–62

    CAS  PubMed  Google Scholar 

  • Browman KE, Badiani A, Robinson TE (1998a) The influence of environment on the induction of sensitization to the psychomotor activating effects of intravenous cocaine in rats is dose-dependent. Psychopharmacology 137:90–98

    Google Scholar 

  • Browman KE, Badiani A, Robinson TE (1998b) Modulatory effect of environmental stimuli on the susceptibility to amphetamine sensitization: a dose-effect study in rats. J Pharmacol Exp Ther 287:1007–1014

    Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637-672

    CAS  PubMed  Google Scholar 

  • Chen Z, Sugimoto Y, Kamei C (1999) Effects of intracerebroventricular injection of alpha-fluoromethylhistidine on radial maze performance in rats. Pharmacol Biochem Behav 64:513–518

    Article  CAS  PubMed  Google Scholar 

  • Crombag HS, Badiani A, Chan J, Dell'Orco J, Dineen SP, Robinson TE (2001) The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology 24:680–690

    Article  CAS  PubMed  Google Scholar 

  • Decker MW, Curzon P, Brioni JD, Arneric SP (1994) Effects of ABT-418, a novel cholinergic channel ligand, on place learning in septal-lesioned rats. Eur J Pharmacol 261:217–222

    Article  CAS  PubMed  Google Scholar 

  • Fox GB, Pan JB, Esbenshade TA, Bennani YL, Black LA, Faghih R, Hancock AA, Decker MW (2002) Effects of histamine H3 receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup. Behav Brain Res 131:151–161

    Article  CAS  PubMed  Google Scholar 

  • Francis S, Fine J, Tannock R (2001) Methylphenidate selectively improves story retelling in children with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 11:217–228

    Article  CAS  PubMed  Google Scholar 

  • Hamamura T, Fibiger HC (1993) Enhanced stress-induced dopamine release in the prefrontal cortex of amphetamine-sensitized rats. Eur J Pharmacol 237:46–52

    Article  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Res 163:195–205

    CAS  PubMed  Google Scholar 

  • Kollins SH, Macdonald EK, Rush CR (2001) Assessing the abuse potential of methylphenidate in nonhuman and human subjects. A review. Pharmacol Biochem Behav 68:611–627

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther 296:876–883

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 22:7264–7271

    CAS  PubMed  Google Scholar 

  • Laurelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31:371–384

    PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Rakic P (1991) Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proc Natl Acad Sci USA 88:10218–10224

    PubMed  Google Scholar 

  • Lieberman JA, Sheitman BB, Kinon BJ (1997) Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17:205–229

    CAS  PubMed  Google Scholar 

  • Ligneau X, Lin J-S, Vanni-Mercier G, Jouvet M, Muir JL, Ganellin CR, Stark H, Elz S, Schunack W, Schwartz J-C (1998) Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J Pharmacol Exp Ther 287:658–66

    CAS  PubMed  Google Scholar 

  • Marinelli M, Piazza PV (2002) Review article: interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci 16:387–394

    Article  PubMed  Google Scholar 

  • Miyazaki S, Imaizumi M, Onodera K (1995) Effects of thioperamide, a histamine H3-receptor antagonists, on a scopolamine-induced learning deficit using an elevated plus-maze test in mice. Life Sci 57:2137–2144

    Article  CAS  PubMed  Google Scholar 

  • Muck-Seler D, Pivac N, Jakovljevic M, Brzovic Z (1999) Platlet serotonin, plasma cortisol, and dexamethasone suppression test in schizophrenic patients. Biol Psychiatry 45:1433–1439

    Article  CAS  PubMed  Google Scholar 

  • Neisewander JL, Bardo MT (1987) Expression of morphine-conditioned hyperactivity is attenuated by naloxone and pimozide. Psychopharmacology 93:314–319

    CAS  PubMed  Google Scholar 

  • NIH Consensus Statement (1998) Diagnosis and treatment of attention deficit hyperactivity disorder. Nov 16–18 16:1–37

    Google Scholar 

  • Onodera K, Miyazaki S, Imaizumi M, Stark H, Schunack W (1998) Improvement by FUB 181, a novel histamine H3-receptor antagonist, on learning and memory in an elevated plus-maze test in mice. Naunyn-Schmiedeberg's Arch Pharmacol 357:508–513

    CAS  Google Scholar 

  • Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103:480–492

    Google Scholar 

  • Pelham WE, Aronoff HR, Midlam JK, Shapiro CJ, Gnagy EM, Chronis AM, Onyango AN, Forehand G, Nguyen A, Waxmonsky J (1999) A comparison of ritalin and adderall: efficacy and time-course in children with attention-deficit/hyperactivity disorder. Pediatrics 103:e43

    CAS  PubMed  Google Scholar 

  • Phillips TJ, Dickinson S, Burkhart-Kash S (1994) Behavioral sensitization to drug stimulant effects in C57BL/6J and DBA/2J inbred mice. Behav Neurosci 108:789–803

    CAS  PubMed  Google Scholar 

  • Piazza PV, Deminiere JM, lLe Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    CAS  PubMed  Google Scholar 

  • Pierce R, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25:192–216

    CAS  PubMed  Google Scholar 

  • Pliszka SR (2001) New developments in psychopharmacology of attention deficit hyperactivity disorder. Exp Opin Invest Drugs 10:1797–1807

    CAS  Google Scholar 

  • Plotsky PM, Owens MJ, Nemeroff CB (1998) Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am 21:293–307

    CAS  PubMed  Google Scholar 

  • Post RM (1992) Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry 149:999–1010

    CAS  PubMed  Google Scholar 

  • Prasad BM, Ulibarri C, Kalivas PW, Sorg BA (1996) Effect of adrenalectomy on the initiation and expression of cocaine-induced sensitization. Psychopharmacology 125:265–273

    CAS  PubMed  Google Scholar 

  • Rivet JM, Stinus L, LeMoal M, Mormede P (1989) Behavioral sensitization to amphetamine is dependent on corticosteroid receptor activation. Brain Res 498:149–453

    CAS  PubMed  Google Scholar 

  • Robinson TE (1984) Behavioral sensitization: characterization of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats. Psychopharmacology 84:466–475

    Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration. A review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neuronal basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    CAS  PubMed  Google Scholar 

  • Robinson TE, Becker JB, Presty SK (1982) Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res 253:231–241

    CAS  PubMed  Google Scholar 

  • Rosenberg DR, Lewis DA (1995) Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analysis. J Comp Neurol 358:383–400

    CAS  PubMed  Google Scholar 

  • Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24:31–39

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Izenwasser S (2002) Pretreatment with methylphenidate sensitizes rats to the reinforcing effects of cocaine. Pharmaocol Biochem Behav 72:651–657

    Article  CAS  Google Scholar 

  • Schoffelmeer ANM, De Vries TJ, Wardeh G, Van de Ven HWM, Vanderschuren LJMJ (2002) Psychomotor stimulant-induced behavioral sensitization depends on nicotinic receptor activations. J Neurosci 22:3269–3276

    CAS  PubMed  Google Scholar 

  • Seargeant J (2000) The cognitive-energetic model: an empirical approach to attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24:7-12

    Article  PubMed  Google Scholar 

  • Seeman P, Bazowej N, Guan H, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riedere P, Jellinger K, Watanabe S, Tourtellotte WW (1987) Human brain receptors in children and aging adults. Synapse 1:399–404

    CAS  PubMed  Google Scholar 

  • Solanto MV (2000) Clinical psychopharmacology of ADHD: implications for animal models. Neurosci Biobehav Rev 24:27–30

    Article  CAS  PubMed  Google Scholar 

  • Stewart J, Badiani A (1993) Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol 4:289–312

    CAS  PubMed  Google Scholar 

  • Stewart J, Druhan J (1993) Development of both conditioning and sensitization of the behavioral activating effects of amphetamine is blocked by the non-competitive NMDA receptor antagonist, MK-801. Psychopharmacology 110:125–32

    Google Scholar 

  • Stewart J, Vezina P (1988) Conditioning and behavioral sensitization. In: Kalivas PW, Barnes CD (eds) Sensitization in the nervous system. Telford Press, Caldwell, N.J., pp 207–224

  • Swanson JM, Seargeant JA, Taylor E, Sonuga-Barke EJS, Jensen PS, Cantwell DPS (1998) Attention deficit hyperactivity disorder and hyperkinetic disorder. Lancet 351:429–433

    PubMed  Google Scholar 

  • Tedford CE, Edgar DM, Sweidel WF, Mignot E, Nishino S, Pawlowski GP, Yates SL (2000) Effects of a novel, selective, and potent histamine H3 receptor antagonist, GT-2331, on rat sleep-wakefulness and canine cataplexy. Soc Neurosci Abstr 26:460.3

    Google Scholar 

  • Vanderschuren LJMJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    CAS  PubMed  Google Scholar 

  • Vanderschuren LJMJ, Donne Schmidt E, De Vries TJ, Van Moorsel AP, Tilders FJH, Schoeffelmeer ANM (1999) A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 19:9579–9586

    Google Scholar 

  • Wilens TE, Biederman J, Specer TJ, Bostic J, Prince J, Monuteaus MC, Soriano J, Fine C, Abrams A, Rater M, Plolisner D (1999) A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am J Psychiatry 156:1931–1937

    CAS  PubMed  Google Scholar 

  • Yates SL, Phillips JG, Gregory R, Pawlowski GP, Fadnis L, Khan MA, Ali SM, Tedford CE (1999) Identification and pharmacological characterization of a series of new 1H-4-substituted-imidazoyl histamine H3 receptor ligands. J Pharmacol Exp Ther 289:1151–1159

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard B. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komater, V.A., Browman, K.E., Curzon, P. et al. H3 receptor blockade by thioperamide enhances cognition in rats without inducing locomotor sensitization. Psychopharmacology 167, 363–372 (2003). https://doi.org/10.1007/s00213-003-1431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1431-0

Keywords

Navigation