Skip to main content
Log in

Buspirone-induced antinociception is mediated by l-type calcium channels and calcium/caffeine-sensitive pools in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Previous studies have shown that buspirone, a partial 5-HT1A receptor agonist, produces antinociceptive effects in rats and mice; Ca2+ plays a critical role as a second messenger in mediating nociceptive transmission. 5-HT1A receptors have been proven to be coupled functionally with various types of Ca2+ channels in neurons, including N-, P/Q-, T-, or L-type. It was of interest to investigate the involvement of extracellular/intracellular Ca2+ in buspirone-induced antinociception.

Objectives

To determine whether central serotonergic pathways participate in the antinociceptive processes of buspirone, and investigate the involvement of Ca2+ mechanisms, particularly L-voltage-gated Ca2+ channels and Ca2+/caffeine-sensitive pools, in buspirone-induced antinociception.

Methods

Antinociception was assessed using the hot-plate test (55°C, hind-paw licking latency) in mice treated with either buspirone (1.25–20 mg/kg i.p.) alone or the combination of buspirone and fluoxetine (2.5–10 mg/kg i.p.), 5-HTP (25 mg/kg i.p.), nimodipine (2.5–10 mg/kg i.p.), nifedipine (2.5–10 mg/kg i.p.), CaCl2 (25–200 nmol per mouse i.c.v.), EGTA (5–30 nmol per mouse i.c.v.), or ryanodine (0.25–2 nmol per mouse i.c.v.).

Results

Buspirone dose dependently increased the licking latency in the hot-plate test in mice. This effect of buspirone was enhanced by fluoxetine, 5-HTP, nimodipine, and nifedipine. Interestingly, central administration of Ca2+ reversed the antinociceptive effects of buspirone. In contrast to these, ryanodine or EGTA administered centrally potentiated buspirone-induced antinociception.

Conclusions

Decreasing neuronal Ca2+ levels potentiated buspirone-induced antinociception; conversely, increasing intracellular Ca2+ abolished the antinociceptive effects of buspirone. These results suggest that Ca2+ influx from extracellular fluid and release of Ca2+ from Ca2+/caffeine-sensitive microsomal pools may be involved in buspirone-induced antinociception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Bayliss DA, Li YW, Talley EM (1997) Effects of serotonin on caudal raphe neurons: inhibition of N- and P/Q-type calcium channels and the afterhyperpolarization. J Neurophysiol 77:1362–1374

    CAS  PubMed  Google Scholar 

  • Ben-Sreti MM, Gonzalez JP, Sewell RD (1983) Effects of elevated calcium and calcium antagonists on 6,7-benzomorphan-induced analgesia. Eur J Pharmacol 90:385–391

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:1326

    Google Scholar 

  • Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67:67–186

    Google Scholar 

  • Cardenas CG, Del Mar LP, Scroggs RS (1995) Variation in serotonergic inhibition of calcium channel currents in four types of rat sensory neurons differentiated by membrane properties. J Neurophysiol 74:1870–1879

    CAS  PubMed  Google Scholar 

  • Chapman DB, Way EL (1982) Modification of endorphine/enkephalin analgesia and stress-induced analgesia by divalent cations, a cation chelator and an ionophore. Br J Pharmacol 75:389–396

    CAS  PubMed  Google Scholar 

  • Chen Y, Penington NJ (1996) Differential effects of protein kinase C activation on 5-HT1A receptor coupling to Ca2+ and K+ currents in rat serotonergic neurones. J Physiol 496:129–137

    CAS  PubMed  Google Scholar 

  • Crisp T, Stafinsky JL, Spanos LJ, Uram M, Perni VC, Donepudi HB (1991) Analgesic effects of serotonin and receptor-selective serotonin agonists in the rat spinal cord. Gen Pharmacol 22:247–251

    CAS  PubMed  Google Scholar 

  • Damaj MI (2000) The involvement of spinal Ca2+/calmodulin-protein kinase II in nicotine-induced antinociception in mice. Eur J Pharmacol 404:103–110

    Article  CAS  PubMed  Google Scholar 

  • Daval G, Verge D, Basbaum A, Bourgoin S, Hamon M (1987) Autoradiographic evidence of serotonin 1 binding sites on primary afferent fibers in the dorsal horn of the rat spinal cord. Neurosci Lett 83:71–76

    CAS  PubMed  Google Scholar 

  • Del Mar LP, Cardenas CG, Scroggs RS (1994) Serotonin inhibits high-threshold Ca2+ channel currents in capsaicin-sensitive acutely isolated adult-rat DRG neurons. J Neurophysiol 72:2551–2554

    PubMed  Google Scholar 

  • Dogrul A, Yesilyurt O (1998) Effects of intrathecally administered aminoglycoside antibiotics, calcium-channel blockers, nickel and calcium on acetic acid-induced writhing test in mice. Gen Pharmacol 30:613–616

    Article  CAS  PubMed  Google Scholar 

  • Dogrul A, Yesilyurt O, Isimer A, Guzeldemir ME (2001) L-type and T-type calcium channel blockade potentiate the analgesic effects of morphine and selective μ opioid agonist, but not to selective δ and κ agonist at the level of the spinal cord in mice. Pain 93:61–68

    CAS  PubMed  Google Scholar 

  • Eide PK, Joly NM, Hole K (1990) The role of spinal cord 5-HT1A and 5-HT1B receptors in the modulation of a spinal nociceptive reflex. Brain Res 536:195–200

    CAS  PubMed  Google Scholar 

  • El-Yassir N, Fleetwood-Walker SM (1990) A 5-HT1-type receptor mediates the antinociceptive effect of nucleus raphe magus stimulation in the rat. Brain Res 523:92–99

    CAS  PubMed  Google Scholar 

  • Friel DD, Tsien RW (1992) A caffeine- and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurons modulates effects of Ca2+ entry on [Ca2+]i. J Physiol 450:217246

    Google Scholar 

  • Galeotti N, Ghelardini C, Bartolini A (1997) 5-HT1A agonists induce central cholinergic antinociception. Pharmacol Biochem Behav 57:835–841

    Article  CAS  PubMed  Google Scholar 

  • Giordano J, Rogers L (1989) Antinociceptive effects of the novel anxiolytic buspirone in three pain tests in rats. Pain 39:109–113

    CAS  PubMed  Google Scholar 

  • Giordano J, Rogers L (1992) Putative mechanisms of buspirone-induced antinociception in the rat. Pain 50:365–372

    CAS  PubMed  Google Scholar 

  • Gobert A, Rivet JM, Cistarelli L, Melon C, Millan MJ (1999) Buspirone modulates basal and fluoxetine-stimulated dialysate levels of dopamine, noradrenaline and serotonin in the frontal cortex of freely moving rats: activation of serotonin1A receptors and blockade of α2-adrenergic receptors underlie its actions. Neuroscience 93:1251–1262

    Google Scholar 

  • Haley TJ, McCormick WG (1957) Pharmacological effects produced by interacerebral injections of drugs in the conscious mouse. Br J Pharmacol 12:12–15

    CAS  Google Scholar 

  • Hano K, Kaneto H, Kakunaga T (1964) Significance of Ca2+ ion in the morphine analgesia. Jpn J Pharmacol 14:227–229

    CAS  Google Scholar 

  • Harris RA, Loh HH, Way EL (1975) Effects of divalent cations, cation chelators and an ionophore on morphine analgesia and tolerance. J Pharmcol Exp Ther 195:488–498

    CAS  Google Scholar 

  • Jain NK, Kulkarni SK (1999) L-NAME, a nitric oxide synthase inhibitor, modulates cholinergic antinociception. Methods Find Exp Clin Pharmacol 21:161–165

    CAS  PubMed  Google Scholar 

  • Kakunaga T, Kaneto H, Hano K (1966) Pharmacologic studies on analgesics. VII. Significance of the calcium ion in morphine analgesia. J Pharmacol Exp Ther 153:134–141

    CAS  PubMed  Google Scholar 

  • Kitamura Y, Nagatani T, Watanabe T (1994) Buspirone enhances head twitch behavior in mice. Eur J Pharmacol 253:297–301

    Article  CAS  PubMed  Google Scholar 

  • Koike H, Saito H, Matsuki N (1994) 5-HT1A receptor-mediated inhibition of N-type calcium current in acutely isolated ventromedial hypothalamic neuronal cells. Neurosci Res 19:161–166

    CAS  PubMed  Google Scholar 

  • Lin CH, Huang YC, Tsai JJ, Gean PW (2001) Modulation of voltage-dependent calcium currents by serotonin in acutely isolated rat amygdala neurons. Synapse 41:351–359

    Article  CAS  PubMed  Google Scholar 

  • Lucas JJ, Mellstrom B, Colado MI, Naranjo JR (1993) Molecular mechanisms of pain: serotonin1A receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurons. Neuron 10:599–611

    CAS  PubMed  Google Scholar 

  • Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    CAS  PubMed  Google Scholar 

  • Malmberg AB, Yaksh TL (1994) Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N-type and P-type channels inhibits formalin-induced nociception. J Neurosci 14:4882–4890

    Google Scholar 

  • Malmberg AB, Yaksh TL (1995) Effect of continuous intrathecal infusion of ω-conopeptides, N-type calcium channel blockers, on behaviour and antinociception in the formalin and hot-plate tests in rats. Pain 60:83–90

    Article  CAS  PubMed  Google Scholar 

  • McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP (1991) The brain ryanodine receptor: caffeine-sensitive Ca2+ release channel. Neuron 7:1725

    Google Scholar 

  • Millan MJ (1994) Serotonin and pain: evidence that activation of 5-HT1A receptors does not elicit antinociception against noxious thermal, mechanical and chemical stimuli in mice. Pain 58:45–61

    CAS  PubMed  Google Scholar 

  • Miranda HF, Paeile C (1990) Interaction between analgesics and calcium channel blockers. Gen Pharmacol 21:171–174

    Article  CAS  PubMed  Google Scholar 

  • Miranda HF, Bustamante D, Kramer V, Pelissier T, Saavedra H, Paeile C, Fernandez E, Pinardi G (1992) Antinociceptive effects of Ca2+ channel blockers. Eur J Pharmacol 217:137–141

    Article  CAS  PubMed  Google Scholar 

  • Omote K, Sonoda H, Kawamata M, Iwasaki H, Namiki A (1993) Potentiation of antinociceptive effects of morphine by calcium-channel blockers at the level of the spinal cord. Anesthesiology 79:746–752

    CAS  PubMed  Google Scholar 

  • Ormazabal MJ, Goicoechea C, Alfaro MJ, Sanchez E, Martin MI (1999) Study of mechanisms of calcitonin analgesia in mice: involvement of 5-HT3 receptors. Brain Res 845:130–138

    Article  CAS  PubMed  Google Scholar 

  • Penington NJ, Fox AP (1995) Toxin-insensitive Ca2+ current in dorsal raphe neurons. J Neurosci 15:5719–5726

    CAS  PubMed  Google Scholar 

  • Penington NJ, Kelly JS (1990) Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron 4:751–758

    CAS  PubMed  Google Scholar 

  • Protais P, Lesourd M, Comoy E (1998) Similar pharmacological properties of 8-OH-DPAT and alnespirone (S 20499) at dopamine receptors: comparison with buspirone. Eur J Pharmacol 352:179–187

    Article  CAS  PubMed  Google Scholar 

  • Reader TA, Ase AR, Le Marec N, Lalonde R (2000) Differential effects of l-trytophan and buspirone on biogenic amine contents and metabolism in Lurcher mice cerebellum. Neurosci Lett 280:171–174

    Article  CAS  PubMed  Google Scholar 

  • Redrobe JP, Bourin M (1998) Dose-dependent influence of buspirone on the activities of selective serotonin reuptake inhibitors in the mouse forced swimming test. Psychopharmacology 138:198–206

    Google Scholar 

  • Rhee JS, Ishibashi H, Akaike N (1996) Serotonin modulates high-voltage-activated Ca2+ channels in rat ventromedial hypothalamic neurons. Neuropharmacology 35:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Roberts MH (1984) 5-Hydroxytryptamine and antinociception. Neuropharmacology 23:1529–1536

    CAS  PubMed  Google Scholar 

  • Robles LI, Barrios M, Del Pozo E, Dordal A, Baeyens JM (1996) Effects of K+ channel blockers and openers on antinociception induced by agonists of 5-HT1A receptors. Eur J Pharmacol 295:181–188

    Article  CAS  PubMed  Google Scholar 

  • Rousseau E, Smith JS, Meissner G (1987) Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 253:C364–C368

    CAS  PubMed  Google Scholar 

  • Saeki K, Obi I, Ogiku N, Hakamata Y, Matsumoto T (1998) Characterization of brain-type ryanodine receptor permanently expressed in Chinese hamster ovary cells. Life Sci 63:575–588

    Article  CAS  PubMed  Google Scholar 

  • Smith FL, Stevens DL (1995) Calcium modulation of morphine analgesia: role of calcium channels and intracellular pool calcium. J Pharmacol Exp Ther 272:290–299

    CAS  PubMed  Google Scholar 

  • Strosznajder J, Chalimoniuk M, Samochocki M (1996) Activation of serotonergic 5-HT1A receptor reduces Ca2+- and glutamatergic receptor-evoked arachidonic acid and No/cGMP release in adult hippocampus. Neurochem Int 28:439–444

    Article  CAS  PubMed  Google Scholar 

  • Suh HW, Song DK, Choi SR, Huh SO, Kim YH (1997) Differential effects of ω-conotoxin GVIA, nimodipine, calmidazolium and KN-62 injected intrathecally on the antinociception induced by β-endorphine, morphine and [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin administered intracerebro-ventricularly in the mouse. J Pharmacol Exp Ther 282:961–966

    CAS  Google Scholar 

  • Sun QQ, Dale N (1997) Serotonergic inhibition of the T-type and high voltage-activated Ca2+ currents in the primary sensory neurons of Xenopus larvae. J Neurosci 17:6839–6849

    CAS  PubMed  Google Scholar 

  • Sun QQ, Dale N (1998) Differential inhibition of N and P/Q Ca2+ currents by 5-HT1A and 5-HT1D receptors in spinal neurons of Xenopus larvae. J Physiol 510:103–120

    CAS  PubMed  Google Scholar 

  • Uphouse L (1997) Multiple serotonin receptors: too many, not enough, or just the right number? Neurosci Biobehav Rev 21:679–698

    Google Scholar 

  • Vocci FJ, Welch SP, Dewey WL (1980) Differential effects of divalent cation, cation chelators and an ionophore(A23187) on morphine and dibutyryl guanosine 3', 5'-cyclic monophosphate antinociception. J Pharmacol Exp Ther 214:463–466

    CAS  PubMed  Google Scholar 

  • Wang JF, Han SP, Lu Z, Wang XJ, Han JS, Ren MF (1989) Effect of calcium ion on analgesia of opioid peptides. Int J Neurosci 47:279–285

    CAS  PubMed  Google Scholar 

  • Wang XP, Liang JH, Lu Y, Zhang Q, Liu RK, Ye XF, Li LJ (2002) Anti-aggressive action of imipramine and buspirone in isolated mice. Chin J Psychiatry 35:28–31

    CAS  Google Scholar 

  • Warner R, Hudson-Howard L, Johnston C, Skolnick M (1990) Serotonin involvement in analgesia induced by transcranial electrostimulation. Life Sci 46:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Wei ZY, Karim F, Roerig SC (1996) Spinal morphine/clonidine antinociceptive synergism: involvement of G proteins and N-type voltage-dependent calcium channels. J Pharmacol Exp Ther 278:1392–1407

    CAS  PubMed  Google Scholar 

  • Williams S, Serafin M, Muhlethaler M, Bernheim L (1998) The serotonin inhibition of high-voltage-activated calcium currents is relieved by action potential-like depolarizations in dissociated cholinergic nucleus basalis neurons of the guinea-pig. Eur J Neurosci 10:3291–3294

    Article  CAS  PubMed  Google Scholar 

  • Wong CH, Wu WH, Zbuzek VK (1998) Hypotension does not alter the antinociceptive effect of nifedipine. Life Sci 63:343–348

    Article  Google Scholar 

  • Xu W, Qiu XC, Han JS (1994) Serotonin receptor subtypes in spinal antinociception in the rat. J Pharmacol Exp Ther 269:1182–1189

    CAS  PubMed  Google Scholar 

  • Zemlan FP, Murphy AZ, Behbehani MM (1994) 5-HT1A receptors mediate the effect of the bulbospinal serotonin system on spinal dorsal horn nociceptive neurons. Pharmacology 48:1–10

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Mogens Nielsen (Royal School of Pharmacy, Universitetsparken 2, Denmark) and Dr. Hanting Zhang (University of Tennessee Health Science Center, USA) for their advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hui Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, JH., Wang, XH., Liu, RK. et al. Buspirone-induced antinociception is mediated by l-type calcium channels and calcium/caffeine-sensitive pools in mice. Psychopharmacology 166, 276–283 (2003). https://doi.org/10.1007/s00213-002-1327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-002-1327-4

Keywords

Navigation