Advertisement

Numerische Mathematik

, Volume 74, Issue 3, pp 337–359 | Cite as

On the effect of numerical integration in the Galerkin boundary element method

  • S.A. Sauter
  • A. Krapp

Summary.

We discuss the effect of cubature errors when using the Galerkin method for approximating the solution of Fredholm integral equations in three dimensions. The accuracy of the cubature method has to be chosen such that the error resulting from this further discretization does not increase the asymptotic discretization error. We will show that the asymptotic accuracy is not influenced provided that polynomials of a certain degree are integrated exactly by the cubature method. This is done by applying the Bramble-Hilbert Lemma to the boundary element method.

Mathematics Subject Classification (1991): 65D30, 65D32,65N30, 65N38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • S.A. Sauter
    • 1
  • A. Krapp
    • 1
  1. 1.Institut für Praktische Mathematik, Universität Kiel, D-24098 Kiel, Germany e-mail: sas@informatik.uni-kiel.de; Fax: 0431-8804054 DE

Personalised recommendations