Skip to main content
Log in

An immersed Crouzeix–Raviart finite element method in 2D and 3D based on discrete level set functions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is devoted to the construction and analysis of immersed finite element (IFE) methods in three dimensions. Different from the 2D case, the points of intersection of the interface and the edges of a tetrahedron are usually not coplanar, which makes the extension of the original 2D IFE methods based on a piecewise linear approximation of the interface to the 3D case not straightforward. We address this coplanarity issue by an approach where the interface is approximated via discrete level set functions. This approach is very convenient from a computational point of view since in many practical applications the exact interface is often unknown, and only a discrete level set function is available. As this approach has also not be considered in the 2D IFE methods, in this paper we present a unified framework for both 2D and 3D cases. We consider an IFE method based on the traditional Crouzeix–Raviart element using integral values on faces as degrees of freedom. The novelty of the proposed IFE is the unisolvence of basis functions on arbitrary triangles/tetrahedrons without any angle restrictions even for anisotropic interface problems, which is advantageous over the IFE using nodal values as degrees of freedom. The optimal bounds for the IFE interpolation errors are proved on shape-regular triangulations. For the IFE method, optimal a priori error and condition number estimates are derived with constants independent of the location of the interface with respect to the unfitted mesh. The extension to anisotropic interface problems with tensor coefficients is also discussed. Numerical examples supporting the theoretical results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adjerid, S., Babuška, I., Guo, R., Lin, T.: An enriched immersed finite element method for interface problems with nonhomogeneous jump conditions. Comput. Methods Appl. Mech. Eng. 404, 115770 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, N., Chen, H.: A partially penalty immersed interface finite element method for anisotropic elliptic interface problems. Numer. Methods Partial Differ. Equ. 30, 1984–2028 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer, Berlin (2008)

    Google Scholar 

  7. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104, 472–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burman, E., Hansbo, P., Larson, M.G.: A cut finite element method with boundary value correction. Math. Comput. 87(310), 633–657 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burman, E., Hansbo, P., Larson, M.G., Massing, A.: A cut discontinuous Galerkin method for the Laplace–Beltrami operator. IMA J. Numer. Anal. 37, 138–169 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, S., Chen, L., Guo, R., Lin, F.: Immersed virtual element methods for elliptic interface problems in two dimensions. J. Sci. Comput. 93(12), 1–41 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chu, C.-C., Graham, I.G., Hou, T.-Y.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79, 1915–1955 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM Math. Model. Numer. Anal. Modélisation Mathématique et Analyse Numérique 7(R3), 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45, 421–442 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, C.M., Ranner, T.: Finite element analysis for a coupled bulk-surface partial differential equation. IMA J. Numer. Anal. 33, 377–402 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elsey, M., Esedoglu, S.: Fast and accurate redistancing by directional optimization. SIAM J. Sci. Comput. 36, A219–A231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Foote, R.L.: Regularity of the distance function. Proc. Am. Math. Soc. 92, 153–155 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Fries, T., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Meth. Eng. 84, 253–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  20. Guo, R.: Solving parabolic moving interface problems with dynamical immersed spaces on unfitted meshes: fully discrete analysis. SIAM J. Numer. Anal. 59, 797–828 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, R., Lin, T.: A group of immersed finite-element spaces for elliptic interface problems. IMA J. Numer. Anal. 39, 482–511 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, R., Lin, T.: An immersed finite element method for elliptic interface problems in three dimensions. J. Comput. Phys. 414, 109478 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, R., Lin, T., Lin, Y.: A fixed mesh method with immersed finite elements for solving interface inverse problems. J. Sci. Comput. 79, 148–175 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, R., Zhang, X.: Solving three-dimensional interface problems with immersed finite elements: a-priori error analysis. J. Comput. Phys. 441, 110445 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guzmán, J., Sánchez, M.A., Sarkis, M.: A finite element method for high-contrast interface problems with error estimates independent of contrast. J. Sci. Comput. 73, 330–365 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, D., He, X., Lund, D., Zhang, X.: PIFE-PIC: parallel immersed finite element particle-in-cell for 3-D kinetic simulations of plasma–material interactions. SIAM J. Sci. Comput. 43, C235–C257 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hou, S., Song, P., Wang, L., Zhao, H.: A weak formulation for solving elliptic interface problems without body fitted grid. J. Comput. Phys. 249, 80–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, J., Zou, J.: Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete Contin. Dyn. Syst. Ser. B 7, 145–170 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Ji, H., Wang, F., Chen, J., Li, Z.: Analysis of nonconforming IFE methods and a new scheme for elliptic interface problems. arXiv:2108.03179 (2021)

  31. Ji, H., Wang, F., Chen, J., Li, Z.: A new parameter free partially penalized immersed finite element and the optimal convergence analysis. Numer. Math. 150, 1035–1086 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kafafy, R., Lin, T., Lin, Y., Wang, J.: Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Methods Eng. 64, 940–972 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kwak, D.Y., Wee, K.T., Chang, K.S.: An analysis of a broken \(P_1\)-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48, 2117–2134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, J., Markus, J., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60, 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Z.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27, 253–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53, 1121–1144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lew, A.J., Rangarajan, R.: Parameterization of planar curves immersed in triangulations with application to finite elements. Int. J. Numer. Methods Eng. 88, 556–585 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vallaghé, S., Papadopoulo, T.: A trilinear immersed finite element method for solving the electroencephalography forward problem. SIAM J. Sci. Comput. 32, 2379–2394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, S., Wang, F., Xu, X.: A rigorous condition number estimate of an immersed finite element method. J. Sci. Comput. 83, 1–23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiao, Y., Xu, J., Wang, F.: High-order extended finite element methods for solving interface problems. Comput. Methods Appl. Mech. Eng. 364, 112964 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, J.: Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients. J. Xiangtan Univ. 1, 1–5 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H. An immersed Crouzeix–Raviart finite element method in 2D and 3D based on discrete level set functions. Numer. Math. 153, 279–325 (2023). https://doi.org/10.1007/s00211-023-01345-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-023-01345-z

Mathematics Subject Classification

Navigation