Skip to main content
Log in

On algebraically stabilized schemes for convection–diffusion–reaction problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

An abstract framework is developed that enables the analysis of algebraically stabilized discretizations in a unified way. This framework is applied to a discretization of this kind for convection–diffusion–reaction equations. The definition of this scheme contains a new limiter that improves a standard one in such a way that local and global discrete maximum principles are satisfied on arbitrary simplicial meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Augustin, M., Caiazzo, A., Fiebach, A., Fuhrmann, J., John, V., Linke, A., Umla, R.: An assessment of discretizations for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 200(47–48), 3395–3409 (2011)

  2. Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numér. 15(1), 3–25 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badia, S., Bonilla, J.: Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization. Comput. Methods Appl. Mech. Eng. 313, 133–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrenechea, G.R., John, V., Knobloch, P.: Finite element methods respecting the discrete maximum principle for convection-diffusion equations. arXiv:2204.07480 (2022)

  5. Barrenechea, G.R., John, V., Knobloch, P.: Some analytical results for an algebraic flux correction scheme for a steady convection–diffusion equation in one dimension. IMA J. Numer. Anal. 35(4), 1729–1756 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrenechea, G.R., John, V., Knobloch, P.: Analysis of algebraic flux correction schemes. SIAM J. Numer. Anal. 54(4), 2427–2451 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrenechea, G.R., Burman, E., Karakatsani, F.: Blending low-order stabilised finite element methods: a positivity-preserving local projection method for the convection-diffusion equation. Comput. Methods Appl. Mech. Eng. 317, 1169–1193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrenechea, G.R., Burman, E., Karakatsani, F.: Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes. Numer. Math. 135(2), 521–545 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barrenechea, G.R., John, V., Knobloch, P.: An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes. Math. Models Methods Appl. Sci. 27(3), 525–548 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barrenechea, G.R., John, V., Knobloch, P., Rankin, R.: A unified analysis of algebraic flux correction schemes for convection–diffusion equations. SeMA J. 75(4), 655–685 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)

    Article  MATH  Google Scholar 

  12. Burman, E., Ern, A.: Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection–diffusion–reaction equation. Comput. Methods Appl. Mech. Eng. 191(35), 3833–3855 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burman, E., Ern, A.: Stabilized Galerkin approximation of convection–diffusion–reaction equations: discrete maximum principle and convergence. Math. Comput. 74(252), 1637–1652 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193(15–16), 1437–1453 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  16. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  18. Guermond, J.-L., Nazarov, M., Popov, B., Yang, Y.: A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations. SIAM J. Numer. Anal. 52(4), 2163–2182 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gurris, M., Kuzmin, D., Turek, S.: Implicit finite element schemes for the stationary compressible Euler equations. Internat. J. Numer. Methods Fluids 69(1), 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jha, A., John, V., Knobloch, P.: Adaptive grids in the context of algebraic stabilizations for convection–diffusion–reaction equations. arXiv:2007.08405 (2022)

  21. Jha, A., John, V.: A study of solvers for nonlinear AFC discretizations of convection–diffusion equations. Comput. Math. Appl. 78(9), 3117–3138 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. John, V., Knobloch, P., Pártl, O.: A numerical assessment of finite element discretizations for convection–diffusion–reaction equations satisfying discrete maximum principles. Comput. Methods Appl. Math. (2022). https://doi.org/10.1515/cmam-2022-0125

  23. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: part II—analysis for \(P_1\) and \(Q_1\) finite elements. Comput. Methods Appl. Mech. Eng. 197(21–24), 1997–2014 (2008)

    Article  MATH  Google Scholar 

  24. John, V., Schmeyer, E.: Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198(3–4), 475–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Knobloch, P.: A linearity preserving algebraic flux correction scheme of upwind type satisfying the discrete maximum principle on arbitrary meshes. In: Radu, F.A., Kumar, K., Berre, I., Nordbotten, J.M., Pop, I.S. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2017. Lect. Notes Comput. Sci. Eng., vol. 126, pp. 909–918. Springer, Cham (2019)

  26. Knobloch, P.: A new algebraically stabilized method for convection–diffusion–reaction equations. In: Vermolen, F.J., Vuik, C. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lect. Notes Comput. Sci. Eng., vol. 139, pp. 605–613. Springer, Cham (2021)

  27. Knobloch, P.: On the discrete maximum principle for algebraic flux correction schemes with limiters of upwind type. In: Huang, Z., Stynes, M., Zhang, Z. (eds.) Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016. Lect. Notes Comput. Sci. Eng., vol. 120, pp. 129–139. Springer, Cham (2017)

  28. Knobloch, P.: Improvements of the Mizukami-Hughes method for convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 196(1–3), 579–594 (2006)

  29. Knobloch, P.: Numerical solution of convection-diffusion equations using a nonlinear method of upwind type. J. Sci. Comput. 43(3), 454–470 (2010)

  30. Kuzmin, D.: Algebraic flux correction for finite element discretizations of coupled systems. In: Papadrakakis, M., Oñate, E., Schrefler, B. (eds.) Proceedings of the Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering, pp. 1–5. CIMNE, Barcelona (2007)

  31. Kuzmin, D.: Algebraic flux correction I. Scalar conservation laws. In: Kuzmin, D., Löhner, R., Turek, S. (eds.) Flux-Corrected Transport. Principles, Algorithms, and Applications, 2nd edn., pp. 145–192. Springer, Dordrecht (2012)

  32. Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys. 219(2), 513–531 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228(7), 2517–2534 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuzmin, D.: Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes. J. Comput. Appl. Math. 236(9), 2317–2337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuzmin, D., Shadid, J.N.: Gradient-based nodal limiters for artificial diffusion operators in finite element schemes for transport equations. Internat. J. Numer. Methods Fluids 84(11), 675–695 (2017)

    Article  MathSciNet  Google Scholar 

  36. Kuzmin, D., Turek, S.: High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198(1), 131–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lohmann, C.: Physics-compatible Finite Element Methods for Scalar and Tensorial Advection Problems. Springer, Wiesbaden (2019)

    Book  MATH  Google Scholar 

  38. Lohmann, C., Kuzmin, D., Shadid, J.N., Mabuza, S.: Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements. J. Comput. Phys. 344, 151–186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mizukami, A., Hughes, T.J.R.: A Petrov–Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle. Comput. Methods Appl. Mech. Eng. 50(2), 181–193 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion–Reaction and Flow Problems. Springer, Berlin (2008)

    MATH  Google Scholar 

  41. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  42. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Knobloch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported through the Grant No. 19-04243S of the Czech Science Foundation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, V., Knobloch, P. On algebraically stabilized schemes for convection–diffusion–reaction problems. Numer. Math. 152, 553–585 (2022). https://doi.org/10.1007/s00211-022-01325-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01325-9

Mathematics Subject Classification

Navigation