Skip to main content

Three families of grad div-conforming finite elements

Abstract

Several smooth finite element de Rham complexes are constructed in three-dimensional space, which yield three families of \({\text {grad}}{\text {div}}\)-conforming finite elements. The simplest element has only 8 degrees of freedom (DOFs) for a tetrahedron and 14 DOFs for a 3-rectangle. We show that these elements lead to conforming and convergent approximations to quad-div problems. As a by-product, we obtain some \({\text {grad}}{\text {div}}\)-nonconforming elements. Numerical experiments validate the correctness and efficiency of the nonconforming elements for solving the quad-div problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Altan, S., Aifantis, E.: On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica et Materialia 26(2), 319–324 (1992)

    Article  Google Scholar 

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyris, J., Fried, I., Scharpf, D.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. 72(692), 701–709 (1968)

    Article  Google Scholar 

  4. Arnold, D.: Finite element exterior calculus. SIAM, Philadelphia (2018)

    Book  MATH  Google Scholar 

  5. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold, D., Logg, A.: Periodic table of the finite elements. SIAM News 47(9), 212 (2014)

    Google Scholar 

  8. Brenner, S., Cui, J., Sung, L.: Multigrid methods based on Hodge decomposition for a quad-curl problem. Comput. Methods. Appl. Math. 19(2), 215–232 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S., Scott, R.: The mathematical theory of finite element methods, vol. 15. Springer Science Business Media, New York (2008)

    MATH  Google Scholar 

  10. Brenner, S., Sun, J., Sung, L.: Hodge decomposition methods for a quad-curl problem on planar domains. J. Comput. Sci. 73(2–3), 495–513 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, G., Qiu, W., Xu, L.: Analysis of an interior penalty dg method for the quad-curl problem. IMA J. Numer. Anal. 41(4), 2990–3023 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christiansen, S., Hu, J., Hu, K.: Nodal finite element de Rham complexes. Numerische Mathematik 139(2), 411–446 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christiansen, S., Hu, K.: Generalized finite element systems for smooth differential forms and stokes’ problem. Numerische Mathematik 140(2), 327–371 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Demlow, A.: Elliptic problems on polyhedral domains. Lecture Notes (2016)

  15. Falk, R., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan, R., Liu, Y., Zhang, S.: Mixed schemes for fourth-order div equations. Comput. Methods Appl. Math. 19(2), 341–357 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations: theory and algorithms, vol. 5. Springer Science Business Media, New York (2012)

    MATH  Google Scholar 

  18. Hiptmair, R.: Canonical construction of finite elements. Math. Comput. 68(228), 1325–1346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hong, Q., Hu, J., Shu, S., Xu, J.: A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30(6), 565–578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, K., Zhang, Q., Zhang, Z.: Simple curl-curl-conforming finite elements in two dimensions. SIAM J. Sci. Comput. 42(6), A3859–A3877 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, K., Zhang, Q., Zhang, Z.: A family of finite element stokes complexes in three dimensions. SIAM J. Numer. Anal. 60(1), 222–243 (2022)

    Article  MathSciNet  Google Scholar 

  22. Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mindlin, R.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  24. Monk, P.: Finite element methods for Maxwell’s equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  25. Morley, L.: The triangular equilibrium element in the solution of plate bending problems. Aeronaut. Quart. 19(2), 149–169 (1968)

    Article  Google Scholar 

  26. Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84(295), 2059–2081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, J.: A mixed FEM for the quad-curl eigenvalue problem. Numerische Mathematik 132(1), 185–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, J., Zhang, Q., Zhang, Z.: A curl-conforming weak Galerkin method for the quad-curl problem. BIT Numer. Math. 59(4), 1093–1114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, C., Sun, Z., Cui, J.: A new error analysis of a mixed finite element method for the quad-curl problem. Appl. Math. Comput. 349, 23–38 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Ženíšek, A.: Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theor. 7(4), 334–351 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Q., Wang, L., Zhang, Z.: H(\(\text{ curl}^2\))-conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM J. Sci. Comput. 41(3), A1527–A1547 (2019)

    Article  MATH  Google Scholar 

  32. Zhang, S.: A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59(1), 219–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, S.: Mixed schemes for quad-curl equations. Esaim Math. Modell. Numer. Anal. 52(1), 147–161 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, S.: Regular decomposition and a framework of order reduced methods for fourth order problems. Numerische Mathematik 138, 241–271 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, B., Hu, Q., Xu, J.: A nonconforming finite element method for fourth order curl equations in \({\mathbb{R} }^3\). Math. Comput. 80(276), 1871–1886 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by the National Natural Science Foundation of China Grants NSAF U1930402, NSFC 12131005, and NSFC 12101036.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, Z. Three families of grad div-conforming finite elements. Numer. Math. 152, 701–724 (2022). https://doi.org/10.1007/s00211-022-01321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01321-z

Mathematics Subject Classification

  • 65N30
  • 65N15
  • 65N12