Abstract
Several smooth finite element de Rham complexes are constructed in three-dimensional space, which yield three families of \({\text {grad}}{\text {div}}\)-conforming finite elements. The simplest element has only 8 degrees of freedom (DOFs) for a tetrahedron and 14 DOFs for a 3-rectangle. We show that these elements lead to conforming and convergent approximations to quad-div problems. As a by-product, we obtain some \({\text {grad}}{\text {div}}\)-nonconforming elements. Numerical experiments validate the correctness and efficiency of the nonconforming elements for solving the quad-div problem.
This is a preview of subscription content, access via your institution.



References
Altan, S., Aifantis, E.: On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica et Materialia 26(2), 319–324 (1992)
Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)
Argyris, J., Fried, I., Scharpf, D.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. 72(692), 701–709 (1968)
Arnold, D.: Finite element exterior calculus. SIAM, Philadelphia (2018)
Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)
Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)
Arnold, D., Logg, A.: Periodic table of the finite elements. SIAM News 47(9), 212 (2014)
Brenner, S., Cui, J., Sung, L.: Multigrid methods based on Hodge decomposition for a quad-curl problem. Comput. Methods. Appl. Math. 19(2), 215–232 (2019)
Brenner, S., Scott, R.: The mathematical theory of finite element methods, vol. 15. Springer Science Business Media, New York (2008)
Brenner, S., Sun, J., Sung, L.: Hodge decomposition methods for a quad-curl problem on planar domains. J. Comput. Sci. 73(2–3), 495–513 (2017)
Chen, G., Qiu, W., Xu, L.: Analysis of an interior penalty dg method for the quad-curl problem. IMA J. Numer. Anal. 41(4), 2990–3023 (2021)
Christiansen, S., Hu, J., Hu, K.: Nodal finite element de Rham complexes. Numerische Mathematik 139(2), 411–446 (2018)
Christiansen, S., Hu, K.: Generalized finite element systems for smooth differential forms and stokes’ problem. Numerische Mathematik 140(2), 327–371 (2018)
Demlow, A.: Elliptic problems on polyhedral domains. Lecture Notes (2016)
Falk, R., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)
Fan, R., Liu, Y., Zhang, S.: Mixed schemes for fourth-order div equations. Comput. Methods Appl. Math. 19(2), 341–357 (2019)
Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations: theory and algorithms, vol. 5. Springer Science Business Media, New York (2012)
Hiptmair, R.: Canonical construction of finite elements. Math. Comput. 68(228), 1325–1346 (1999)
Hong, Q., Hu, J., Shu, S., Xu, J.: A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30(6), 565–578 (2012)
Hu, K., Zhang, Q., Zhang, Z.: Simple curl-curl-conforming finite elements in two dimensions. SIAM J. Sci. Comput. 42(6), A3859–A3877 (2020)
Hu, K., Zhang, Q., Zhang, Z.: A family of finite element stokes complexes in three dimensions. SIAM J. Numer. Anal. 60(1), 222–243 (2022)
Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)
Mindlin, R.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)
Monk, P.: Finite element methods for Maxwell’s equations. Oxford University Press, Oxford (2003)
Morley, L.: The triangular equilibrium element in the solution of plate bending problems. Aeronaut. Quart. 19(2), 149–169 (1968)
Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84(295), 2059–2081 (2015)
Sun, J.: A mixed FEM for the quad-curl eigenvalue problem. Numerische Mathematik 132(1), 185–200 (2016)
Sun, J., Zhang, Q., Zhang, Z.: A curl-conforming weak Galerkin method for the quad-curl problem. BIT Numer. Math. 59(4), 1093–1114 (2019)
Wang, C., Sun, Z., Cui, J.: A new error analysis of a mixed finite element method for the quad-curl problem. Appl. Math. Comput. 349, 23–38 (2019)
ŽenÃÅ¡ek, A.: Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theor. 7(4), 334–351 (1973)
Zhang, Q., Wang, L., Zhang, Z.: H(\(\text{ curl}^2\))-conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM J. Sci. Comput. 41(3), A1527–A1547 (2019)
Zhang, S.: A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59(1), 219–233 (2009)
Zhang, S.: Mixed schemes for quad-curl equations. Esaim Math. Modell. Numer. Anal. 52(1), 147–161 (2018)
Zhang, S.: Regular decomposition and a framework of order reduced methods for fourth order problems. Numerische Mathematik 138, 241–271 (2018)
Zheng, B., Hu, Q., Xu, J.: A nonconforming finite element method for fourth order curl equations in \({\mathbb{R} }^3\). Math. Comput. 80(276), 1871–1886 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported in part by the National Natural Science Foundation of China Grants NSAF U1930402, NSFC 12131005, and NSFC 12101036.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Q., Zhang, Z. Three families of grad div-conforming finite elements. Numer. Math. 152, 701–724 (2022). https://doi.org/10.1007/s00211-022-01321-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-022-01321-z
Mathematics Subject Classification
- 65N30
- 65N15
- 65N12