Skip to main content
Log in

Spectral Galerkin boundary element methods for high-frequency sound-hard scattering problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is concerned with the design of two different classes of Galerkin boundary element methods for the solution of high-frequency sound-hard scattering problems in the exterior of two-dimensional smooth convex scatterers. We prove in this paper that both methods require a small increase (in the order of \(k^\epsilon \) for any \(\epsilon > 0\)) in the number of degrees of freedom to guarantee frequency independent precisions with increasing wavenumber k. In addition, the accuracy of the numerical solutions are independent of frequency provided sufficiently many terms in the asymptotic expansion are incorporated into the integral equation formulation. Numerical results validating \(\mathcal {O}(k^\epsilon )\) algorithms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, D.C, For sale by the Superintendent of Documents (1964)

  2. Amini, S., Profit, A.: Multi-level fast multipole solution of the scattering problem. Eng. Anal. Bound. Elem. 27(5), 547–564 (2003)

    Article  MATH  Google Scholar 

  3. Anand, A., Boubendir, Y., Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. II. The three-dimensional scalar case. Numer. Math. 114(3), 373–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banjai, L., Hackbusch, W.: Hierarchical matrix techniques for low- and high-frequency Helmholtz problems. IMA J. Numer. Anal. 28(1), 46–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boubendir, Y., Turc, C.: Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions. IMA J. Numer. Anal. 33(4), 1176–1225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruno, O., Geuzaine, C., Reitich, F.: On the \(O(1)\) solution of multiple-scattering problems. IEEE Trans. Magn. 41(5), 1488–1491 (2005)

    Google Scholar 

  8. Bruno, O.P., Domínguez, V., Sayas, F.J.: Convergence analysis of a high-order Nyström integral-equation method for surface scattering problems. Numer. Math. 124(4), 603–645 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruno, O.P., Geuzaine, C.A.: An \(O(1)\) integration scheme for three-dimensional surface scattering problems. J. Comput. Appl. Math. 204(2), 463–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruno, O..P., Geuzaine, C..A., Monro, J..A., Jr., Reitich, F.: Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1816), 629–645 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruno, O.P., Kunyansky, L.A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169(1), 80–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Céa, J.: Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier (Grenoble) 14(fasc. 2), 345–444 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chandler-Wilde, S.N., Graham, I.G.: Boundary integral methods in high frequency scattering. In: Highly oscillatory problems, London Math. Soc. Lecture Note Ser., vol. 366, pp. 154–193. Cambridge University Press, Cambridge (2009)

  14. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chandler-Wilde, S.N., Hewett, D.P.: Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens. Integr. Equa. Oper. Theory 82(3), 423–449 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chandler-Wilde, S.N., Hewett, D.P., Langdon, S., Twigger, A.: A high frequency boundary element method for scattering by a class of nonconvex obstacles. Numer. Math. 129(4), 647–689 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chandler-Wilde, S.N., Langdon, S.: A Galerkin boundary element method for high frequency scattering by convex polygons. SIAM J. Numer. Anal. 45(2), 610–640 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chandler-Wilde, S.N., Langdon, S., Mokgolele, M.: A high frequency boundary element method for scattering by convex polygons with impedance boundary conditions. Commun. Comput. Phys. 11(2), 573–593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chandler-Wilde, S.N., Spence, E.A., Gibbs, A., Smyshlyaev, V.P.: High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis. SIAM J. Math. Anal. 52(1), 845–893 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, vol. 93. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  21. Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics (New York). Wiley, New York (1983)

    MATH  Google Scholar 

  22. Davies, R.W., Morgan, K., Hassan, O.: A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain. Comput. Mech. 44(3), 321–331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106(3), 471–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ecevit, F.: Frequency independent solvability of surface scattering problems. Turkish J. Math. 42(2), 407–422 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ecevit, F., Eruslu, H.H.: A Galerkin BEM for high-frequency scattering problems based on frequency-dependent changes of variables. IMA J. Numer. Anal. 39(2), 893–923 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ecevit, F., Özen, H.Ç.: Frequency-adapted Galerkin boundary element methods for convex scattering problems. Numer. Math. 135(1), 27–71 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. I. The two-dimensional case. Numer. Math. 114(2), 271–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fedoryuk, M.V.: The stationary phase method and pseudodifferential operators. Russ. Math. Surv. 26(1), 65 (1971)

    Article  MATH  Google Scholar 

  29. Galkowski, J.: Distribution of resonances in scattering by thin barriers. Mem. Am. Math. Soc. 259(1248), ix+152 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Galkowski, J., Müller, E.H., Spence, E.A.: Wavenumber-explicit analysis for the Helmholtz \(h\)-BEM: error estimates and iteration counts for the Dirichlet problem. Numer. Math. 142(2), 329–357 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Giladi, E., Keller, J.B.: An asymptotically derived boundary element method for the helmholtz equations. Appl. Comput. Electromagn. Soc. (2004)

  32. Groth, S., Hewett, D., Langdon, S.: A hybrid numerical-asymptotic boundary element method for high frequency scattering by penetrable convex polygons. Wave Motion 78, 32–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Groth, S.P., Hewett, D.P., Langdon, S.: Hybrid numerical-asymptotic approximation for high-frequency scattering by penetrable convex polygons. IMA J. Appl. Math. 80(2), 324–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hesthaven, J., Warburton, T.: High-order accurate methods for time-domain electromagnetics. CMES Comput. Model. Eng. Sci. 5(5), 395–407 (2004)

    MATH  Google Scholar 

  35. Hewett, D.P.: Shadow boundary effects in hybrid numerical-asymptotic methods for high-frequency scattering. Eur. J. Appl. Math. 26(5), 773–793 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hewett, D.P., Langdon, S., Chandler-Wilde, S.N.: A frequency-independent boundary element method for scattering by two-dimensional screens and apertures. IMA J. Numer. Anal. 35(4), 1698–1728 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hewett, D.P., Langdon, S., Melenk, J.M.: A high frequency \$hp\$ boundary element method for scattering by convex polygons. SIAM J. Numer. Anal. 51(1), 629–653 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Johnson, W.P.: The curious history of Faà di Bruno’s formula. Am. Math. Monthly 109(3), 217–234 (2002)

    MATH  Google Scholar 

  40. Langdon, S., Mokgolele, M., Chandler-Wilde, S.: High frequency scattering by convex curvilinear polygons. J. Comput. Appl. Math. 234(6), 2020–2026 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lazergui, S., Boubendir, Y.: Asymptotic expansions of the Helmholtz equation solutions using approximations of the Dirichlet to Neumann operator. J. Math. Anal. Appl. 456(2), 767–786 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis. Springer, New York (2002)

    Book  MATH  Google Scholar 

  43. Melrose, R.B.: Local Fourier-Airy integral operators. Duke Math. J. 42(4), 583–604 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  44. Melrose, R.B.: Airy operators. Commun. Partial. Differ. Equ. 3(1), 1–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Melrose, R.B., Taylor, M.E.: Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55(3), 242–315 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Namburu, R., Mark, E., Clarke, J.: Scalable electromagnetic simulation environment. CMES Comput. Model. Eng. Sci. 5(5), 443–453 (2004)

    MATH  Google Scholar 

  47. Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998)

    Google Scholar 

  48. Sherer, S.E., Visbal, M.R.: Time-domain scattering simulations using a high-order overset-grid approach. In: Workshop on Computational Electromagnetics in Time-Domain, 2005. CEM-TD 2005., pp. 44–47 (2005)

  49. Taflove, A., Hagness, S.C.: Computational electrodynamics: The finite-difference time-domain method, 2nd edn. Artech House Inc, Boston (2000)

    MATH  Google Scholar 

  50. Tong, M.S., Chew, W.C.: Multilevel fast multipole acceleration in the Nyström discretization of surface electromagnetic integral equations for composite objects. IEEE Trans. Antennas Propagat. 58(10), 3411–3416 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their constructive comments as this helped in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Ecevit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. Ecevit is supported by the Scientific and Technological Research Council of Turkey through grant TÜBİTAK-1001-117F056. Y. Boubendir’s work was supported by the NSF through Grants DMS-1720014 and DMS-2011843. A. Anand gratefully acknowledges the support by Science & Engineering Research Board through File No MTR/2017/000643.

Appendices

Appendix

A Asymptotic expansion of the total field

The ansatz representing the asymptotic expansion of the total field \(\eta \) for the Neumann boundary value problem used in the present paper is given by Melrose and Taylor in [45]. However, the authors did not present all the mathematical steps needed in its derivation. In this section, we provide the missing details of this analysis.

Let \(K \subset {\mathbb {R}}^{n+1}\) be a compact strictly convex obstacle such that \(B= \partial K \subset {\mathbb {R}}^{n+1}\) is a smooth hyper-surface, and consider the Neumann-to-Dirichlet operator

$$\begin{aligned} N^{-1} : {\mathcal {E}}'({{\mathbb {R}}\times B}) \ni f(t,x)\mapsto v(t,x)|_{{\mathbb {R}}\times B} \in {\mathcal {D}}'({{\mathbb {R}}\times B}) \end{aligned}$$
(57)

where \({\mathcal {D}}'(B \times {\mathbb {R}})\) and \({\mathcal {E}}'({{\mathbb {R}}\times B})\) are the spaces of distributions and compactly supported distributions respectively, and v is the solution to the wave problem

$$\begin{aligned} \left\{ \begin{array}{ll} (\partial _{tt} -\varDelta ) v(t,x)=0 &{} \text {in } {\mathbb {R}}\times \varOmega , \\ \partial _{\nu }v(t,x)|_{{\mathbb {R}}\times B} = f(t,x) &{} \text {on } {\mathbb {R}} \times B, \end{array} \right. \end{aligned}$$
(58)

wherein \(\varOmega = {\mathbb {R}}^{n+1} \setminus K\) is the exterior domain, and \(\nu \) is the outward unit normal.

In what follows, for an incident field \(v^{i}(t,x) = \delta (t - \alpha \cdot x)\) (\(\delta \) is the Dirac function) with direction \(\alpha \in {\mathcal {S}}^n\), we denote the solution of the wave problem (58) associated with \(f(t,x) = (\alpha \, \cdot \, \nu (x)) \partial _t v^{i}(t,x)\) by v. In this case, the total field \(v^t := v + v^{i}\) can be expressed on the boundary as [45, p.296]

$$\begin{aligned} v^t(t,x)|_{{\mathbb {R}} \times B} = (I+N^{-1}(\alpha \cdot \nu (x)) \partial _t) \delta (t - \alpha \cdot x) \end{aligned}$$
(59)

where I is the identity operator. Using the same notation and procedure in [45], we define the Kirchhoff operator (see [45, Equation 8.26])

$$\begin{aligned} Q_N : \mathcal {E'}({\mathcal {S}}^n \times {\mathbb {R}}) \ni v(t,x) \mapsto (I+N^{-1}(\alpha \cdot \nu (x) ) \partial _t )Fv(t,x) \in \mathcal {D'}(B \times {\mathbb {R}}) \end{aligned}$$

where F is the Fourier integral operator [41, Equation 9]

$$\begin{aligned} Fv(t,x) := \int _{{\mathbb {R}}\times {\mathcal {S}}^n} \kappa _F(t-s,w,x) v(s,\alpha ) ds d \alpha \end{aligned}$$
(60)

with kernel \(\kappa _{F}(t,\alpha ,x):=\delta (t-\alpha \cdot x)\).

As shown in [45], the asymptotic behavior of the total field \(\eta \) is determined by the kernel \(\kappa _{Q_N}\) of the Kirchhoff operator \(Q_N\).

Lemma 6

[45, Lemma 9.1] The asymptotic behavior as \(k \rightarrow \pm \infty \) of the total field \(\eta (\alpha ,k,x)\) obtained by inverse Fourier transformation of the kernel \(\kappa _{Q_N}(\alpha ,t,x)\)

$$\begin{aligned} \eta (\alpha ,x,k)=\int e^{it k} \kappa _{Q_N}(\alpha ,t,x) dt \end{aligned}$$
(61)

is determined by the singularities of the kernel \(\kappa _{Q_N}\) modulo rapidly decreasing terms.

The main goal is therefore the study of the kernel \(\kappa _{Q_N}\). To this end, one first utilizes the general theory of Fourier integral operators with folding canonical relations [45, §5 and §6] to decompose the operator \(Q_N\). In what follows, we use the notation in [45] except that \(OPS^\theta _{\xi ,\zeta }\) denotes the collection of pseudodifferential operators with symbols in the Hörmander class \(S^\theta _{\xi ,\zeta }\), and we write \(OPS^\theta \) for \(OPS^\theta _{1,0}\).

Theorem 6

[45, Theorem 8.30] The Kirchhoff operator \(Q_N\) can be expressed as

$$\begin{aligned} Q_N = J_1D{\mathcal {A}}^{-1} J_2 \end{aligned}$$
(62)

where \(J_1\) and \(J_2\) are elliptic Fourier integral operators of order zero, \(D\in OPS^{-\frac{n}{2}-\frac{1}{6}}_{\frac{1}{3},0}\) has an asymptotic expansion

$$\begin{aligned} D \sim \sum _{r \in {\mathbb {Z}}_+, \, \ell \in -{\mathbb {N}}} A_{r,\ell } \varPhi ^{r,\ell } \end{aligned}$$
(63)

with \(A_{r,\ell } \in S^{-\frac{n}{2}-\frac{\ell }{3}-\frac{r}{3}+(\ell +1)_-}_{cl}\) and \(\varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _1)\in S^{(\frac{\ell }{3}-\frac{2r}{3})_{+}}_{\frac{1}{3},0} ({\mathbb {R}})\) (see [44, p.11-12]) so that

$$\begin{aligned} Dv(t,x) \sim \sum _{r \in {\mathbb {Z}}_+, \, \ell \in -{\mathbb {N}}} \int e^{i(x-y) \cdot \xi + i(t-t')k} a_{r,\ell }(t,x,k,\xi ) \varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _{1}) v(t',y) dt' dy dk d\xi \nonumber \\ \end{aligned}$$
(64)

where \((k,\xi )\) are variables dual to (tx), and \(a_{r,\ell } \in S^{-\frac{n}{2}-\frac{r}{3}-\frac{\ell }{3}+(\ell +1)_-}_{1,0}\) admits an asymptotic expansion

$$\begin{aligned} a_{r,\ell }(t,x,k,\xi ) \sim \sum _{q \in {\mathbb {Z}}_+} k^{-\frac{n}{2}-q-\frac{r}{3}-\frac{\ell }{3}+(\ell +1)_{-}} \, a_{q,r,\ell }(t,x,\xi ) \end{aligned}$$
(65)

wherein \(a_{q,r,\ell }\) are \(C^{\infty }\) functions uniformly bounded together with all their derivatives (cf. [42, Definition 2.5.6]), and \({\mathcal {A}}^{-1}\) is the convolution operator defined by Fourier transformation as [45, Equation 1.36]

$$\begin{aligned} \widehat{{\mathcal {A}}^{-1} v(t,x)} (\xi ) = \dfrac{{\hat{v}}(\xi )}{A_+(k^{-\frac{1}{3}}\xi _1)} \end{aligned}$$

where \(A_+(z) := Ai(e^{\frac{2\pi i}{3}}z)\) and Ai is the Airy function [43].

The Fourier integral operator \(J_2\) is given by

$$\begin{aligned} J_2 :&{\mathcal {E}}'({\mathbb {R}} \times {\mathcal {S}}^n) \rightarrow {\mathcal {D}}'({\mathbb {R}} \times {\mathbb {R}}^n) \\ :&v(s,\alpha ) \mapsto (J_2v)(t',y) = \int e^{i(y-\alpha ) \cdot \xi -i(t'-s)k} a_{J_2}(s,\alpha ,t',y) v(s,\alpha ) ds d\alpha dk d\xi \end{aligned}$$

where \(a_{J_2} \in S^0_{1,0}\) (\(a_{J_2}\) does not depend on \(\xi \) and k because it is a symbol of order 0). Applying the Dirac function at the base point \((0,{\bar{\alpha }})\) (see [41, 45]) yields

$$\begin{aligned} (J_2\delta _{(0,{\bar{\alpha }})})(t',y) \nonumber&= \int e^{i(y-\alpha ) \cdot \xi -i(t'-s)k} a_{J_2}(s,\alpha ,t',y) \delta _{(0,{\bar{\alpha }})}(s,\alpha ) ds d\alpha dk d\xi \\&= \int e^{i(y-{\bar{\alpha }}) \cdot \xi -i t'k} a_{J_2}({\bar{\alpha }},t',y) dk d\xi \nonumber \\&= \int e^{i(y-{\bar{\alpha }}) \cdot \xi -i t'k} a_{J_2}({\bar{\alpha }},t',y)\widehat{\delta _{0}}(k,\xi )dk d\xi = (P\delta _{0})(t',y) \end{aligned}$$
(66)

where the operator \(P\in OPS^{-\frac{n}{2}+\frac{1}{6}}\) is specified by

$$\begin{aligned} (Pv)(t',y) := \int e^{i(y-{\bar{\alpha }}) \cdot \xi -i t'k}a_{J_2}({\bar{\alpha }},y,t'){\widehat{v}}(k,\xi )dk d\xi . \end{aligned}$$

Accordingly, use of (66) in (62) implies

$$\begin{aligned} Q_N(\delta _{(0,{\bar{\alpha }})}(t,x)) = J_1D{\mathcal {A}}^{-1}J_2(\delta _{(0,{\bar{\alpha }})}(t,x)) = J_1D{\mathcal {A}}^{-1}P(\delta _{0}(t,x)). \end{aligned}$$
(67)

Finally, since \(P\delta _0 = P^{\#}\delta _0 \mod OPS^{-\infty }\) and \(P^{\#}\) commutes with \({\mathcal {A}}^{-1}\) [45, p.295], (67) can be rewritten as

$$\begin{aligned} Q_N(\delta _{(0,{\bar{\alpha }})}(t,x)) = J_1DP^{\#}{\mathcal {A}}^{-1}(\delta _{0}(t,x)) \end{aligned}$$
(68)

modulo rapidly decreasing terms.

In what follows, we briefly explain how representation (68) can be used to express the amplitude associated with the kernel \(\kappa _N\) as an asymptotic series of oscillatory integrals each of which is amenable to an application of the stationary phase method [28].

To this end, we first use (63) to deduce for the composition \(DP^{\#}\) of the pseudo-differential operators D and \(P^{\#}\)

$$\begin{aligned} DP^{\#}v(t,x) \sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} \int e^{i(x-y) \cdot \xi -i(t-t')k}a_{r,\ell }(t,x,k,\xi ) \varPhi ^{r,\ell }(k^{-\frac{1}{3}} \xi _1)P^{\#}v(t',y)dt'dydk d\xi \end{aligned}$$
(69)

with

$$\begin{aligned} P^{\#}v(t',y)&:= \int e^{i(y-{\bar{\alpha }}) \cdot \eta +it'\tau } p^{\#}({\bar{\alpha }},t',y) {\widehat{v}}(\tau ,\eta ) d\tau d\eta \nonumber \\&= \int e^{i(y-z-{\bar{\alpha }}) \cdot \eta +i(t'-t'')\tau }p^{\#}({\bar{\alpha }},t',y) v(t'',z) dt''dz d\tau d\eta \end{aligned}$$
(70)

where \(p^{\#} \in S^0_{1,0}\), and \((\tau ,\eta )\) is the dual variable to \((t',y)\). Using (70) in (69), we therefore get

$$\begin{aligned} DP^{\#}v(t,x)&\sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} \int e^{i(x-z) \cdot \xi +(t-t'')k-i{\bar{\alpha }} \cdot \xi } b_{r,\ell }({\bar{\alpha }},t,x,t'',z,k,\xi ) \nonumber \\&\quad \varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _1)v(t'',z)dt'' dz dk d\xi \end{aligned}$$
(71)

with

$$\begin{aligned} b_{r,\ell }({\bar{\alpha }},t,x,t'',z,k,\xi )&:= \int e^{i(y-z) \cdot (\eta -\xi )+i(t'-t'')(\tau -k)-i{\bar{\alpha }} \cdot (\eta -\xi )} \\&\quad a_{r,\ell }(x,t,\xi ,k)p^{\#}({\bar{\alpha }},t',y)dt'dy d\tau d\eta . \end{aligned}$$

As for the composition of the operator \(DP^{\#}\) with the Fourier integral operator \(J_1\) appearing in (62), let us first note that

$$\begin{aligned} J_1 :&\mathcal {D'}({\mathbb {R}} \times {\mathbb {R}}^n) \rightarrow {\mathcal {D}}'({\mathbb {R}}\times B) \nonumber \\ :&v(t',y) \mapsto J_1v(t,x) = \int e^{i\psi _1(x,\tau ,\eta )+i\tau (t-t')-iy \cdot \eta } a_{J_1}(x,t',y)v(t',y) dt'dy d\tau d\eta \end{aligned}$$
(72)

where \((\tau ,\eta )\) are variables dual to (tx), \(a_{J_1} \in S^0_{1,0}\), and the phase function \(\psi _1\) is defined in a neighborhood of the base point as [45, Equations 7.11 and 7.13]

$$\begin{aligned} \psi _1(x,\tau ,\eta ) = -\frac{|\eta '|^2}{2\tau }-\frac{|x'|^2\tau }{2} - \left\{ \begin{array}{cl} \frac{3}{2} (-\eta _1 \tau ^{-\frac{1}{3}})^{\frac{3}{2}} {{\,\mathrm{sgn}\,}}(\alpha \cdot \nu (x)), &{} \text {if } \alpha \cdot \nu (x) \ne 0, \\ 0, &{} \text {otherwise}. \end{array} \right. \end{aligned}$$
(73)

In (73), we have used the notation \(x'=(x_2,\ldots ,x_n)\) for \(x = (x_1,\ldots ,x_n) \in B\) and similarly for \(\eta \in {\mathbb {R}}^n\). Combining (71) with (72), we obtain

$$\begin{aligned} J_1DP^{\#}v(t,x)&\sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} \int e^{i\psi _1(x,\tau ,\eta )+i\tau (t-t')-iy \cdot \eta } a_{J_1}(x,t',y) \Big [ \int e^{i(y-z)\xi +i(t'-t'')k -i{\bar{\alpha }} \cdot \xi } \\&\quad b_{r,\ell }({\bar{\alpha }},t',y,t'',z,k,\xi ) \varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _1) v(t'',z) dt''dz dk d\xi \Big ] dt' dy d\tau d\eta , \end{aligned}$$

and we rewrite this as

$$\begin{aligned} J_1DP^{\#}v(t,x)&\sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} \int e^{i\psi _1(x,k,\xi )-i{\bar{\alpha }} \cdot \xi -itk -iz\xi -it'' k} \nonumber \\&\quad q_{N_{r,\ell }}({\bar{\alpha }},x,t'',z,k,\xi ) \varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _1) v(t'',z)dt''dz dk d\xi \end{aligned}$$
(74)

where

$$\begin{aligned} q_{N_{r,\ell }}({\bar{\alpha }},x,t'',z,k,\xi )&:= a_{J_1}\# b_{r,\ell }({\bar{\alpha }},x,t'',z,k,\xi ) \\&= \int e^{i\psi _1(x,\tau ,\eta )-i\psi _1(x,k,\xi )+i(k-\tau )(t'-t) +i(\xi -\eta ) \cdot y} \\&\quad a_{J_1}(x,t',y) b_{r,\ell }({\bar{\alpha }},t',y,t'',z,k,\xi ) dt'dy d\tau d\eta . \end{aligned}$$

In light of (68), substituting [45, p.295]

$$\begin{aligned} {\mathcal {A}}^{-1}\delta _{0}(t'',z) = \int e^{i\xi \cdot z+ik t''} \frac{1}{A_+(k^{-\frac{1}{3}}\xi _1)} dk d\xi \end{aligned}$$
(75)

for v in (74), we get

$$\begin{aligned} Q_N\delta _{(0,{\bar{\alpha }})}(t,x)&\sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} \int e^{i\psi _1(x,k,\xi )-i{\bar{\alpha }} \cdot \xi -itk -iz \cdot \xi - it''k} q_{N_{r,\ell }}({\bar{\alpha }},x,t'',z,k,\xi ) \nonumber \\&\quad \varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _1) {\mathcal {A}}^{-1}\delta _{0}(t'',z)dt''dz dk d\xi \nonumber \\&\sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} \int e^{i\psi _1(x,k,\xi )-i{\bar{\alpha }} \cdot \xi -itk} q_{N_{r,\ell }}({\bar{\alpha }},x,k,\xi ) \frac{\varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _1)}{A_+(k^{-\frac{1}{3}}\xi _1)}dk d\xi \end{aligned}$$
(76)

where \(q_{N_{r,\ell }}({\bar{\alpha }},x,k,\xi ):= a_J\# b_{r,\ell }({\bar{\alpha }},x,k,\xi )\).

For the kernel \(\kappa _{Q_N}\), we accordingly have

$$\begin{aligned} \kappa _{Q_N}(\alpha ,t,x) \sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} \int e^{i\psi _1(x,k,\xi )-i{\bar{\alpha }} \cdot \xi -itk} q_{N_{r,\ell }}({\bar{\alpha }},x,k,\xi ) \frac{\varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _1)}{A_+(k^{-\frac{1}{3}}\xi _1)} dk d\xi \end{aligned}$$

and, in virtue of Lemma 6, we deduce (see [45, p.298])

$$\begin{aligned} \eta (\alpha ,x,k) \sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in - {\mathbb {N}} \end{array}} \int e^{i\psi _1(x,\xi ,k)-i{\bar{\alpha }} \cdot \xi } q_{N_{r,\ell }}({\bar{\alpha }},x,k,\xi ) \frac{\varPhi ^{r,\ell }(k^{-\frac{1}{3}}\xi _1)}{A_+(k^{-\frac{1}{3}}\xi _1)} d\xi . \end{aligned}$$
(77)

Making the change of variable \(\xi =k \zeta \) in (77), we therefore find [45, p.298]

$$\begin{aligned} \eta (\alpha ,x,k) \sim \sum _{\begin{array}{c} r \in {\mathbb {Z}}_+ \\ \ell \in - {\mathbb {N}} \end{array}} \int e^{ik \psi _2(\alpha , x,\zeta )} q_{N_{r,\ell }}({\bar{\alpha }},x,k,\zeta ) \frac{\varPhi ^{r,\ell }(k^{\frac{2}{3}}\zeta _1)}{A_+(k^{\frac{2}{3}}\zeta _1)} d\zeta \end{aligned}$$
(78)

where \(\psi _2(\alpha , x,\zeta ) = \psi _1(x,1,\zeta )-{\bar{\alpha }} \cdot \zeta \), and with a slight abuse of notation we have written \(q_{N_{r,\ell }}({\bar{\alpha }},x,k,\zeta )\) for \(k^n q_{N_{r,\ell }}({\bar{\alpha }},x,k,\zeta )\). In this case, \(q_{N_{r,\ell }}\) is a symbol of order \(\frac{n}{2}+\frac{1}{6}-\frac{r}{3}-\frac{\ell }{3}+(\ell +1)_{-}\) so that

$$\begin{aligned} q_{N_{r,\ell }}({\bar{\alpha }},x,k,\zeta ) \sim \sum _{q \in {\mathbb {Z}}_+} k^{\frac{n}{2}+\frac{1}{6}-q-\frac{r}{3}-\frac{\ell }{3}+(\ell +1)_{-}} q_{N_{q,r,\ell }}({\bar{\alpha }},x,\zeta ). \end{aligned}$$
(79)

Using (79) in (78), we arrive at

$$\begin{aligned} \eta (\alpha ,x,k) \sim \sum _{\begin{array}{c} q,r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} k^{\frac{n}{2}+\frac{1}{6}-q-\frac{r}{3}-\frac{\ell }{3}+(\ell +1)_{-}} \int e^{ik\psi _2(\alpha , x,\zeta )} q_{N_{q,r,\ell }}({\bar{\alpha }},x,\zeta ) \frac{\varPhi ^{r,\ell }(k^{\frac{2}{3}}\zeta _1)}{A_+(k^{\frac{2}{3}}\zeta _1)} d\zeta . \end{aligned}$$
(80)

In order to further simplify (80), we introduce the function

$$\begin{aligned} \varPsi ^{r,\ell }(\tau ) := e^{-\frac{i\tau ^{3}}{3}} \int \frac{\varPhi ^{r,\ell }(s)}{A_+(s)}e^{-is\tau }ds. \end{aligned}$$
(81)

The symbolic behavior of \(\varPsi ^{r,\ell }\) is as follows.

Lemma 7

[45, Lemma 9.34] The function \(\varPsi ^{r,\ell }\) defined in (81) belongs to \(S^{1+\ell -2r}({\mathbb {R}})\), admits an asymptotic expansion

$$\begin{aligned} \varPsi ^{r,\ell }(\tau ) \sim \sum _{j \in {\mathbb {Z}}_+} \alpha _{r,\ell ,j} \tau ^{1+\ell -2r-3j} \end{aligned}$$
(82)

as \(\tau \rightarrow +\infty \), and is rapidly decreasing in the sense of Schwarz as \(\tau \rightarrow -\infty \).

Rewriting (81) as

$$\begin{aligned} e^{\frac{i\tau ^{3}}{3}}\varPsi ^{r,\ell }(\tau ) =\int \frac{\varPhi ^{r,\ell }(s)}{A_+(s)}e^{-is\tau }ds =\widehat{\Big ( \frac{\varPhi ^{r,\ell }}{A_+} \Big )}(\tau ), \end{aligned}$$

and using \({\mathcal {F}}^{-1}\) to denote the inverse Fourier transform, we obtain

$$\begin{aligned} \frac{\varPhi ^{r,\ell }(k^{\frac{2}{3}}\zeta _1)}{A_+(k^{\frac{2}{3}}\zeta _1)}&= {\mathcal {F}}^{-1} \Big ( \widehat{\Big ( \frac{\varPhi ^{r,\ell }}{A_+} \Big )} (\tau ) \Big ) (k^{\frac{2}{3}}\zeta _1) = {\mathcal {F}}^{-1} \Big ( e^{\frac{i\tau ^{3}}{3}}\varPsi ^{r,\ell }(\tau ) \Big ) (k^{\frac{2}{3}}\zeta _1) \nonumber \\&= \int e^{ik^{\frac{2}{3}}\zeta _1 \tau } e^{\frac{i\tau ^{3}}{3}} \varPsi ^{r,\ell }(\tau ) d\tau = k^{\frac{1}{3}} \int e^{ik \zeta _1 t + ik\frac{t^3}{3}} \varPsi ^{r,\ell }(k^{\frac{1}{3}}t)dt . \end{aligned}$$
(83)

Using (83) in (80), we finally conclude

$$\begin{aligned} \eta (\alpha ,x,k) \sim k^{\frac{1}{3}} \sum _{\begin{array}{c} q,r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} k^{\frac{n}{2}+\frac{1}{6}-q-\frac{r}{3}-\frac{\ell }{3}+(\ell +1)_{-}} \, I_{q,r,\ell }(\alpha ,x,k) \end{aligned}$$
(84)

where

$$\begin{aligned} I_{q,r,\ell }(\alpha ,x,k) := \int e^{ik \psi _3(\zeta ,t)} q_{N_{q,r,\ell }}({\bar{\alpha }},x,\zeta ) \varPsi ^{r,\ell }(k^{\frac{1}{3}}t) d\zeta dt \end{aligned}$$
(85)

with the phase function given by

$$\begin{aligned} \psi _3(\zeta ,t) := \psi _2(\alpha , x,\zeta ) + t\zeta _1 + \frac{t^3}{3}. \end{aligned}$$
(86)

As shown in [45], the integrals \(I_{q,r,\ell }(\alpha ,k,x)\) can be treated using the stationary phase method which results in

$$\begin{aligned} I_{q,r,\ell }(\alpha ,x,k) \sim k^{-\frac{1}{3}} \sum _{p \in {\mathbb {Z}}_+} k^{-\frac{n+1}{2}-\frac{2p}{3}} \, a_{p,q,r,\ell }(\alpha ,x) \, (\varPsi ^{r,\ell })^{(p)}(k^{\frac{1}{3}} Z(\alpha ,x)) \, e^{ik \alpha \cdot x}, \end{aligned}$$
(87)

and this leads into the following for the envelope \(\eta ^{\mathrm{slow}}(\alpha ,k,x) = e^{-ik \alpha \cdot x} \eta (\alpha ,k,x)\).

Theorem 7

[45, Theorem 9.36] In a vicinity of the shadow boundary \(\{ x \in B : \alpha \cdot \nu (x) = 0 \}\), \(\eta ^{\mathrm{slow}}(\alpha ,k,x)\) belongs to the Hörmander class \(S^{0}_{\frac{2}{3},\frac{1}{3}}\) and admits an asymptotic expansion

$$\begin{aligned} \eta ^{\mathrm{slow}}(\alpha ,x,k) \sim \sum _{\begin{array}{c} q,p,r \in {\mathbb {Z}}_+ \\ \ell \in -{\mathbb {N}} \end{array}} a_{p,q,r,\ell } (\alpha ,x,k) \end{aligned}$$
(88)

with

$$\begin{aligned} a_{p,q,r,\ell } (\alpha ,x,k) := k^{-\frac{1}{3}-\frac{2p}{3}-q-\frac{r}{3}-\frac{\ell }{3}+(\ell +1)_-} \, b_{p,q,r,\ell } (\alpha ,x) \, (\varPsi ^{r,\ell })^{(p)}(k^{\frac{1}{3}}Z(\alpha ,x)) \end{aligned}$$

where \(b_{p,q,r,\ell }\) are complex-valued \(C^{\infty }\) functions, Z is a real-valued \(C^{\infty }\) function that is positive on the illuminated region \(\{ x \in B : \alpha \cdot \nu (x) < 0 \}\), negative on the shadow region \(\{ x \in B : \alpha \cdot \nu (x) >0 \}\), and that vanishes precisely to first order at the shadow boundary.

Under certain assumptions, Theorem 7 is in fact valid over the entire boundary B. This is given in the next theorem where we use the notation \(B^{\epsilon }_{\gtrless } = \{ x \in B: \alpha \cdot \nu (x) \gtrless \epsilon \}\).

Theorem 8

Assume there exists \(\epsilon \in (0,1)\) such that on \(B^{\epsilon }_{<}\) the envelope \(\eta ^{\mathrm{slow}}\) belongs to \(S^0_{1,0}(B^{\epsilon }_{<} \times (0,\infty ))\) and admits an asymptotic expansion

$$\begin{aligned} \eta ^{\mathrm{slow}}(\alpha ,x,k) \sim \sum _{j \in {\mathbb {Z}}_+} k^{-j} \, a_j(\alpha ,x), \quad \text {as } k \rightarrow \infty , \end{aligned}$$
(89)

and it is rapidly decreasing in the sense of Schwarz on \(B^{\epsilon }_{>}\) as \(k \rightarrow -\infty \). Then \(\eta ^{\mathrm{slow}} \in S^{0}_{\frac{2}{3},\frac{1}{3}}(B \times (0,\infty ))\) and the asymptotic expansion (88) is valid over the entire boundary B.

The proof of Theorem 8 follows the same lines as in the proof of [23, Corollary 5.3] (see also [27, Theorem 3.1 and Corollary 2.1]) and is based on the standard matching of asymptotic expansions technique (see e.g. [23] and the references therein). The expansion (89) related to Neumann problem is similar to the one given in [45, Equation 1.15] for the Dirichlet case. Furthermore, using the references provided in [23] (see the proof of Corollary 5.3) we can deduce that, for the two-dimensional Neumann boundary value problem, \(\eta ^{\mathrm{slow}}\) decays exponentially in \(B^{\epsilon }_{>}\) as \(k \rightarrow -\infty \) which implies the assumption of its rapid decay in the sense of Schwarz in Theorem 8.

B Auxiliary results

Here we provide auxiliary results used in the proofs.

Lemma 8

[24, Lemma 14] Let \(a(s,k) = k^{\theta } \, b(s) \, \varphi (k^{\omega }\varUpsilon (s))\) where \(b,\varphi \) and \(\varUpsilon \) are smooth functions, b and \(\varUpsilon \) are periodic, and \(\theta \in {\mathbb {R}} \backslash {\mathbb {N}}\) and \(\omega \in {\mathbb {R}} \backslash {\mathbb {Z}}_{+}\). Then

$$\begin{aligned} |D_s^{n}D_{k}^{m} \, a(s,k)|&\lesssim k^{\theta -m} \sum _{j=0}^{n+m} k^{j \omega } |\varphi ^{(j)} (k^{\omega }\varUpsilon (s))| \end{aligned}$$

for all \(n,m \in {\mathbb {Z}}_{+}\) and all \(k >0\).

Theorem 9

[47, Corollary 3.12] Given a function \(f \in C^{\infty }([a,b])\) and \(n \in {\mathbb {Z}}_+\), there exists a constant \(C_n > 0\) such that

$$\begin{aligned} \inf _{p \in {\mathbb {P}}_d} \Vert f-p \Vert _{L^2[(a,b )]} \le C_n \left[ \int _{a}^{b} \left| D^{n} f(s) \right| ^{2} \left( s-a \right) ^{n} \left( b-s \right) ^{n} ds \right] ^{\frac{1}{2}} \, d^{-n} \end{aligned}$$

for all \(d \in {\mathbb {N}}\) with \(d+1 \ge n\).

Lemma 9

[24, Lemma 14] Suppose that either \([\alpha ,\beta ] \subseteq [t_{1},t_{2}] \subseteq (c,d)\) or \([\alpha ,\beta ] \cap (t_{1},t_{2}) = \varnothing \) and \([c,d] \subseteq (t_1,t_2)\). Then, for any \(a,b \in {\mathbb {R}}\), \(n \in {\mathbb {N}} \cup \{ 0 \}\), \(m \in {\mathbb {N}}\), there holds

$$\begin{aligned}&\int _{\alpha }^{\beta } \dfrac{(s-a)^{n} \, (b-s)^{n}}{(s-c)^{m} \, (d-s)^{m}} \, ds\\&\quad = \sum _{\begin{array}{c} 0 \le p,q \le n \\ 1 \le j \le m \end{array}} \left( {\begin{array}{c}2m-j-1\\ m-j\end{array}}\right) \left( {\begin{array}{c}n\\ p\end{array}}\right) \left( {\begin{array}{c}n\\ q\end{array}}\right) \dfrac{(-1)^{n} \, {\mathcal {F}}(\alpha ,\beta ;a,b;c,d;n,p,q;j)}{(d-c)^{2m-j}}. \end{aligned}$$

Here we have

$$\begin{aligned} {\mathcal {F}}(\alpha ,\beta ;a,b;c,d;n,p,q;j)= & {} \left( c-a \right) ^{p} \left( c-b \right) ^{q} \log \left( \dfrac{\beta -c}{\alpha -c} \right) \\&\quad + \left( a-d \right) ^{p} \left( b-d \right) ^{q} \log \left( \dfrac{d-\alpha }{d-\beta } \right) \end{aligned}$$

when \(2n-(p+q+j) = -1\), and

$$\begin{aligned}&{\mathcal {F}}(\alpha ,\beta ;a,b;c,d;n,p,q;j) \\&\quad = \dfrac{\left( c-a \right) ^{p} \left( c-b \right) ^{q}}{2n-(p+q+j)+1} \left[ \left( \beta -c \right) ^{2n-(p+q+j)+1} - \left( \alpha -c \right) ^{2n-(p+q+j)+1} \right] \\&\quad + \dfrac{\left( a-d \right) ^{p} \left( b-d \right) ^{q}}{2n-(p+q+j)+1} \left[ \left( d-\alpha \right) ^{2n-(p+q+j)+1} - \left( d-\beta \right) ^{2n-(p+q+j)+1} \right] \end{aligned}$$

when \(2n-(p+q+j) \ne -1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ecevit, F., Boubendir, Y., Anand, A. et al. Spectral Galerkin boundary element methods for high-frequency sound-hard scattering problems. Numer. Math. 150, 803–847 (2022). https://doi.org/10.1007/s00211-022-01269-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01269-0

Keywords

Mathematics Subject Classification

Navigation