Abstract
We compare the convergence behavior of best polynomial approximations and Legendre and Chebyshev projections and derive optimal rates of convergence of Legendre projections for analytic and differentiable functions in the maximum norm. For analytic functions, we show that the best polynomial approximation of degree n is better than the Legendre projection of the same degree by a factor of \(n^{1/2}\). For differentiable functions such as piecewise analytic functions and functions of fractional smoothness, however, we show that the best approximation is better than the Legendre projection by only some constant factors. Our results provide some new insights into the approximation power of Legendre projections.
Similar content being viewed by others
References
Almkvist, G., Berndt, B.: Gauss, Landen, Ramanujan, the arithmetic–geometric mean, ellipses, \(\pi \), and the ladies diary. Am. Math. Mon. 95(7), 585–608 (1988)
Alpert, B.K., Rokhlin, V.: A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 12(1), 158–179 (1991)
Antonov, V.A., Holsevnikov, K.V.: An estimate of the remainder in the expansion of the generating function for the Legendre polynomials (Generalization and improvement of Bernstein’s inequality). Vestnik Leningrad Univ. Math. 13, 163–166 (1981)
Bernstein, S.: Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné. Mem. Cl. Sci. Acad. Roy. Belg. 4, 1–103 (1912)
Brass, H., Petras, K.: Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. American Mathematical Society, Providence, RI (2011)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)
Cheney, E.W.: Introduction to Approximation Theory. AMS Chelsea Publishing, Providence, RI (1998)
Clenshaw, C.W.: A comparison of “best” polynomial approximations with truncated Chebyshev series expansions. SIAM Numer. Anal. 1(1), 26–37 (1964)
Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, London (1984)
Driscoll, T.A., Hale, H., Trefethen, L.N.: Chebfun User’s Guide. Pafnuty Publications, Oxford (2014)
Eriksson, K.: Some error estimates for the \(p\)-version of the finite element method. SIAM J. Numer. Anal. 23(2), 403–411 (1986)
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, London (2007)
Gui, W., Babuška, I.: The \(h, p\) and \(h\)-\(p\) versions of the finite element method in 1 dimension. Numer. Math. 49, 577–612 (1986)
Hesthaven, J.H., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)
Iserles, A.: A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529–553 (2011)
Jameson, G.J.O.: Inequalities for the perimeter of an ellipse. Math. Gazette 98, 227–234 (2014)
Liu, W.-J., Wang, L.-L., Li, H.-Y.: Optimal error estimates for Chebyshev approximation of functions with limited regularity in fractional Sobolev-type spaces. Math. Comput. 88(320), 2857–2895 (2019)
Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, Boca Raton (2003)
Qu, C.K., Wong, R.: Szego’s conjecture on Lebesgue constants for Legendre series. Pac. J. Math. 135(1), 157–188 (1988)
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
Osipov, A., Rokhlin, V., Xiao, H.: Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation. Springer, Berlin (2013)
Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover Publications, Inc., New York (1981)
Saff, E.B., Totik, V.: Polynomial approximation of piecewise analytic functions. J. Lond. Math. Soc. s2–39, 487–498 (1989)
Shen, J.: Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)
Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)
Suetin, P.K.: Representation of continuous and differentiable functions by Fourier series of Legendre polynomials. Dokl. Akad. Nauk SSSR 158(6), 1275–1277 (1964)
Szegő, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Providence, RI (1939)
Timan, A.F.: Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford (1963)
Townsend, A., Webb, M., Olver, S.: Fast polynomial transforms based on Toeplitz and Hankel matrices. Math. Comput. 87(312), 1913–1934 (2018)
Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)
Wang, H.-Y., Xiang, S.-H.: On the convergence rates of Legendre approximation. Math. Comput. 81(278), 861–877 (2012)
Wang, H.-Y.: On the optimal estimates and comparison of Gegenbauer expansion coefficients. SIAM J. Numer. Anal. 54(3), 1557–1581 (2016)
Wang, H.-Y.: A new and sharper bound for Legendre expansion of differentiable functions. Appl. Math. Lett. 85, 95–102 (2018)
Wang, H.-Y.: On the optimal rates of convergence of Gegenbauer projections. arXiv:2008.00584 (2020)
Xiang, S.-H.: On error bounds for orthogonal polynomial expansions and Gauss-type quadrature. SIAM J. Numer. Anal. 50(3), 1240–1263 (2012)
Xiang, S.-H., Liu, G.-D.: Optimal decay rates on the asymptotics of orthogonal polynomial expansions for functions of limited regularities. Numer. Math. 145, 117–148 (2020)
Zhao, X.-D., Wang, L.-L., Xie, Z.-Q.: Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 51(3), 1443–1469 (2013)
Acknowledgements
The author would like to thank two anonymous referees for their careful reading of the manuscript and helpful comments which have improved this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by National Natural Science Foundation of China under Grant number 11671160.
Rights and permissions
About this article
Cite this article
Wang, H. How much faster does the best polynomial approximation converge than Legendre projection?. Numer. Math. 147, 481–503 (2021). https://doi.org/10.1007/s00211-021-01173-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-021-01173-z