Abstract
Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove the existence of a valid relaxation parameter and high-order accuracy of the resulting method, in the context of general equations, including but not limited to conservative or dissipative systems. The theory is illustrated with several numerical examples.
This is a preview of subscription content, access via your institution.











References
Arévalo, C., Führer, C., Söderlind, G.: Regular and singular \(\beta \)-blocking of difference corrected multistep methods for nonstiff index-2 DAEs. Appl. Numer. Math. 35(4), 293–305 (2000). https://doi.org/10.1016/S0168-9274(99)00142-7
Arévalo, C., Söderlind, G.: Grid-independent construction of multistep methods. J. Comput. Math. 35(5), 672–692 (2017). https://doi.org/10.4208/jcm.1611-m2015-0404
Bashforth, F., Adams, J.C.: An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid with an Explanation of the Method of Integration Employed in Constructing the Tables Which Give the Theoretical Forms of Such Drops. Cambridge University Press, Cambridge (1883)
Boom, P.D., Zingg, D.W.: High-order implicit time-marching methods based on generalized summation-by-parts operators. SIAM J. Sci. Comput. 37(6), A2682–A2709 (2015). https://doi.org/10.1137/15M1014917
Burchard, H., Deleersnijder, E., Meister, A.: A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations. Appl. Numer. Math. 47(1), 1–30 (2003). https://doi.org/10.1016/S0168-9274(03)00101-6
Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 16(1), 46–57 (1979). https://doi.org/10.1137/0716004
Burrage, K., Butcher, J.C.: Non-linear stability of a general class of differential equation methods. BIT Numer. Math. 20(2), 185–203 (1980). https://doi.org/10.1007/BF01933191
Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons Ltd, Chichester (2016). 10.1002/9781119121534
Calvo, M., Hernández-Abreu, D., Montijano, J.I., Rández, L.: On the preservation of invariants by explicit Runge–Kutta methods. SIAM J. Sci. Comput. 28(3), 868–885 (2006). https://doi.org/10.1137/04061979X
Calvo, M., Laburta, M., Montijano, J., Rández, L.: Projection methods preserving Lyapunov functions. BIT Numer. Math. 50(2), 223–241 (2010). https://doi.org/10.1007/s10543-010-0259-3
Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018). https://doi.org/10.1016/j.jcp.2018.02.033
Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Natl. Acad. Sci. U. S. A. 38(3), 235 (1952). https://doi.org/10.1073/pnas.38.3.235
Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer-Verlag, Berlin (2010). https://doi.org/10.1007/978-3-642-04048-1
De Frutos, J., Sanz-Serna, J.M.: Accuracy and conservation properties in numerical integration: the case of the Korteweg–de Vries equation. Numer. Math. 75(4), 421–445 (1997). https://doi.org/10.1007/s002110050247
Dekker, K., Verwer, J.G.: Stability of Runge–Kutta methods for stiff nonlinear differential equations, CWI Monographs, vol. 2. North-Holland, Amsterdam (1984)
Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30(5), 1467–1482 (1993). https://doi.org/10.1137/0730076
Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014
Friedrich, L., Schnücke, G., Winters, A.R., Fernández, D.C.D.R., Gassner, G.J., Carpenter, M.H.: Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws. J. Sci. Comput. 80(1), 175–222 (2019). https://doi.org/10.1007/s10915-019-00933-2. arxiv: 1808.08218 [math.NA]
Friedrich, L., Winters, A.R., Fernández, D.C.D.R., Gassner, G.J., Parsani, M., Carpenter, M.H.: An entropy stable h/p non-conforming discontinuous Galerkin method with the summation-by-parts property. J. Sci. Comput. 77(2), 689–725 (2018). https://doi.org/10.1007/s10915-018-0733-7
Gear, C.W.: Maintaining solution invariants in the numerical solution of ODEs. SIAM J.Sci. Stat. Comput. 7(3), 734–743 (1986). https://doi.org/10.1137/0907050
Glaubitz, J., Öffner, P., Ranocha, H., Sonar, T.: Artificial viscosity for correction procedure via reconstruction using summation-by-parts operators. In: C. Klingenberg, M. Westdickenberg (eds.) Theory, Numerics and Applications of Hyperbolic Problems II, In: Springer Proceedings in Mathematics and Statistics, vol. 237, pp. 363–375. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-91548-7_28
Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)
Grimm, V., Quispel, G.: Geometric integration methods that preserve Lyapunov functions. BIT Numer. Math. 45(4), 709–723 (2005). https://doi.org/10.1007/s10543-005-0034-z
Hadjimichael, Y., Ketcheson, D.I., Lóczi, L., Németh, A.: Strong stability preserving explicit linear multistep methods with variable step size. SIAM J. Numer. Anal. 54(5), 2799–2832 (2016). https://doi.org/10.1137/15M101717X
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer-Verlag, Berlin (2006). https://doi.org/10.1007/3-540-30666-8
Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8. Springer-Verlag, Berlin (2008). https://doi.org/10.1007/978-3-540-78862-1
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol. 14. Springer-Verlag, Berlin (2010). https://doi.org/10.1007/978-3-642-05221-7
Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24(1), 97–117 (2005). https://doi.org/10.1007/s10915-004-4789-1
Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55
Jüngel, A., Schuchnigg, S.: Entropy-dissipating semi-discrete Runge–Kutta schemes for nonlinear diffusion equations. Commun. Math. Sci. 15(1), 27–53 (2017). https://doi.org/10.4310/CMS.2017.v15.n1.a2
Ketcheson, D.I.: Relaxation Runge–Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850–2870 (2019). https://doi.org/10.1137/19M1263662. arxiv:1905.09847 [math.NA]
Kojima, H.: Invariants preserving schemes based on explicit Runge–Kutta methods. BIT Numer. Math. 56(4), 1317–1337 (2016). https://doi.org/10.1007/s10543-016-0608-y
Laburta, M., Montijano, J.I., Rández, L., Calvo, M.: Numerical methods for non conservative perturbations of conservative problems. Comput. Phys. Commun. 187, 72–82 (2015). https://doi.org/10.1016/j.cpc.2014.10.012
LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/S003614290240069X
LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: steady-state and time-dependent problems. SIAM, Philadelphia (2007)
Lozano, C.: Entropy production by explicit Runge–Kutta schemes. J. Sci. Comput. 76(1), 521–565 (2018). https://doi.org/10.1007/s10915-017-0627-0
Lozano, C.: Entropy production by implicit Runge–Kutta schemes. J.Sci. Comput. (2019). https://doi.org/10.1007/s10915-019-00914-5
Mohammadi, F., Arévalo, C., Führer, C.: A polynomial formulation of adaptive strong stability preserving multistep methods. SIAM J. Numer. Anal. 57(1), 27–43 (2019). https://doi.org/10.1137/17M1158811
Nordström, J., La Cognata, C.: Energy stable boundary conditions for the nonlinear incompressible Navier–Stokes equations. Math. Comput. 88(316), 665–690 (2019). https://doi.org/10.1090/mcom/3375
Nyström, E.J.: Über die numerische integration von differentialgleichungen. Acta Soc. Sci. Fennicae 50(13), 1–56 (1925)
Öffner, P., Glaubitz, J., Ranocha, H.: Analysis of artificial dissipation of explicit and implicit time-integration methods. Int. J. Numer. Anal. Model. 17(3), 332–349 (2020). arxiv:1609.02393 [math.NA]
Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76(1), 216–242 (2018). https://doi.org/10.1007/s10915-017-0618-1. arxiv:1701.02264 [math.NA]
Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig (2018)
Ranocha, H.: Some notes on summation by parts time integration methods. Results Appl. Math. 1, 100,004 (2019). https://doi.org/10.1016/j.rinam.2019.100004. arxiv:1901.08377 [math.NA]
Ranocha, H.: On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators. IMA Journal of Numerical Analysis (2020). https://doi.org/10.1093/imanum/drz070. arxiv:1811.11601 [math.NA]
Ranocha, H., Dalcin, L., Parsani, M.: Fully-discrete explicit locally entropy-stable schemes for the compressible Euler and Navier–Stokes equations. Comput. Math. Appl. 80(5), 1343–1359 (2020). https://doi.org/10.1016/j.camwa.2020.06.016
Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1–23 (2018). https://doi.org/10.1016/j.apnum.2018.01.019. arXiv:1606.00995 [math.NA] and arXiv:1606.01056 [math.NA]
Ranocha, H., Ketcheson, D.I.: Energy stability of explicit Runge-Kutta methods for non-autonomous or nonlinear problems (2020). Accepted in SIAM Journal on Numerical Analysis. arxiv:1909.13215 [math.NA]
Ranocha, H., Ketcheson, D.I.: Relaxation-LMM-notebooks. General relaxation methods for initial-value problems with application to multistep schemes. https://github.com/ranocha/Relaxation-LMM-notebooks (2020). https://doi.org/10.5281/zenodo.3697836
Ranocha, H., Ketcheson, D.I.: Relaxation Runge–Kutta methods for Hamiltonian problems. J. Sci. Comput. 84(1), (2020). https://doi.org/10.1007/s10915-020-01277-yarxiv:2001.04826 [math.NA]
Ranocha, H., Lóczi, L., Ketcheson, D.I.: General relaxation methods for initial-value problems with application to multistep schemes (2020). arxiv:2003.03012 [math.NA]
Ranocha, H., Öffner, P.: \(L_2\) stability of explicit Runge–Kutta schemes. J. Sci. Comput. 75(2), 1040–1056 (2018). https://doi.org/10.1007/s10915-017-0595-4
Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge–Kutta methods: fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier–Stokes equations. SIAM J. Sci. Comput. 42(2), A612–A638 (2020). https://doi.org/10.1137/19M1263480. arxiv:1905.09129 [math.NA]
Rosenlicht, M.: Introduction to Analysis. Dover Publications Inc, New York (1986)
Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209(1), 226–248 (2005). https://doi.org/10.1016/j.jcp.2005.02.029
Sanz-Serna, J.M.: An explicit finite-difference scheme with exact conservation properties. J. Comput. Phys. 47(2), 199–210 (1982). https://doi.org/10.1016/0021-9991(82)90074-2
Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems, Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994)
Sanz-Serna, J.M., Manoranjan, V.: A method for the integration in time of certain partial differential equations. J. Comput. Phys. 52(2), 273–289 (1983). https://doi.org/10.1016/0021-9991(83)90031-1
Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. 12(5–6), 1287–1296 (1986). https://doi.org/10.1016/0898-1221(86)90253-1
Shampine, L.F.: Conservation laws and the numerical solution of ODEs, II. Comput. Math. Appl. 38(2), 61–72 (1999). https://doi.org/10.1016/S0898-1221(99)00183-2
Sjögreen, B., Yee, H.: High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. J. Comput. Phys. 364, 153–185 (2018). https://doi.org/10.1016/j.jcp.2018.02.003
Söderlind, G., Fekete, I., Faragó, I.: On the zero-stability of multistep methods on smooth nonuniform grids. BIT Numer. Math. 58(4), 1125–1143 (2018). https://doi.org/10.1007/s10543-018-0716-y
Sun, Z., Shu, C.W.: Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations. Ann. Math. Sci. Appl. 2(2), 255–284 (2017). https://doi.org/10.4310/AMSA.2017.v2.n2.a3
Sun, Z., Shu, C.W.: Enforcing strong stability of explicit Runge–Kutta methods with superviscosity (2019). arxiv:1912.11596 [math.NA]
Sun, Z., Shu, C.W.: Strong stability of explicit Runge–Kutta time discretizations. SIAM J. Numer. Anal. 57(3), 1158–1182 (2019). https://doi.org/10.1137/18M122892X. arxiv:1811.10680 [math.NA]
Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014). https://doi.org/10.1016/j.jcp.2014.02.031
Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method II. In: Estep, D.J., Tavener, S. (eds.) Collected Lectures on the Preservation of Stability under Discretization, Proceedings in Applied Mathematics, vol. 109, pp. 25–49. Society for Industrial and Applied Mathematics, Philadelphia (2002)
Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E.W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0 – fundamental algorithms for scientific computing in python (2019). arxiv:1907.10121 [cs.MS]
Zakerzadeh, H., Fjordholm, U.S.: High-order accurate, fully discrete entropy stable schemes for scalar conservation laws. IMA J. Numer. Anal. 36(2), 633–654 (2016). https://doi.org/10.1093/imanum/drv020
Acknowledgements
Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST). The project “Application-domain-specific highly reliable IT solutions” has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, and financed under the scheme Thematic Excellence Programme no. 2020-4.1.1-TKP2020 (National Challenges Subprogramme).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ranocha, H., Lóczi, L. & Ketcheson, D.I. General relaxation methods for initial-value problems with application to multistep schemes. Numer. Math. 146, 875–906 (2020). https://doi.org/10.1007/s00211-020-01158-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-020-01158-4