Skip to main content
Log in

Lower a posteriori error estimates on anisotropic meshes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Lower a posteriori error bounds obtained using the standard bubble function approach are reviewed in the context of anisotropic meshes. A numerical example is given that clearly demonstrates that the short-edge jump residual terms in such bounds are not sharp. Hence, for linear finite element approximations of the Laplace equation in polygonal domains, a new approach is employed to obtain essentially sharper lower a posteriori error bounds and thus to show that the upper error estimator in the recent paper (Kopteva in Numer Math 137:607–642, 2017) is efficient on partially structured anisotropic meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    Book  Google Scholar 

  2. Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes. SIAM J. Numer. Anal. 53, 2519–2544 (2015)

    Article  MathSciNet  Google Scholar 

  3. Kopteva, N.: Energy-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes. Numer. Math. 137, 607–642 (2017)

    Article  MathSciNet  Google Scholar 

  4. Kopteva, N.: Fully computable a posteriori error estimator using anisotropic flux equilibration on anisotropic meshes. arXiv:1704.04404 (2017)

  5. Kopteva, N.: Lower a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes (in preparation) (2020)

  6. Kunert, G.: An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86, 471–490 (2000)

    Article  MathSciNet  Google Scholar 

  7. Kunert, G.: Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15, 237–259 (2001)

    Article  MathSciNet  Google Scholar 

  8. Kunert, G., Verfürth, R.: Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86, 283–303 (2000)

    Article  MathSciNet  Google Scholar 

  9. Micheletti, S., Perotto, S.: Reliability and efficiency of an anisotropic Zienkiewicz-Zhu error estimator. Comput. Methods Appl. Mech. Eng. 195, 799–835 (2006)

    Article  MathSciNet  Google Scholar 

  10. Picasso, M.: Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator. Commun. Numer. Methods Eng. 19, 13–23 (2003)

    Article  MathSciNet  Google Scholar 

  11. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  12. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Kopteva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by Science Foundation Ireland Grant SFI/12/IA/1683.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopteva, N. Lower a posteriori error estimates on anisotropic meshes. Numer. Math. 146, 159–179 (2020). https://doi.org/10.1007/s00211-020-01137-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01137-9

Keywords

Mathematics Subject Classification

Navigation