Skip to main content
Log in

Discontinuous Galerkin approximations for an optimal control problem of three-dimensional Navier–Stokes–Voigt equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We analyze a fully discrete scheme based on the discontinuous (in time) Galerkin approach, which is combined with conforming finite element subspaces in space, for the distributed optimal control problem of the three-dimensional Navier–Stokes–Voigt equations with a quadratic objective functional and box control constraints. The space-time error estimates of order \(O(\sqrt{\tau }+h)\), where \(\tau \) and h are respectively the time and space discretization parameters, are proved for the difference between the locally optimal controls and their discrete approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990)

    Article  Google Scholar 

  2. Anh, C.T., Nguyet, T.M.: Optimal control of the instationary 3D Navier–Stokes–Voigt equations. Numer. Funct. Anal. Optim. 37, 415–439 (2016)

    Article  MathSciNet  Google Scholar 

  3. Anh, C.T., Nguyet, T.M.: Time optimal control of the unsteady 3D Navier–Stokes–Voigt equations. Appl. Math. Optim. 79, 397–426 (2019)

    Article  MathSciNet  Google Scholar 

  4. Anh, C.T., Trang, P.T.: Pull-back attractors for three-dimensional Navier–Stokes–Voigt equations in some unbounded domains. Proc. R. Soc. Edinb. Sect. A 143, 223–251 (2013)

    Article  MathSciNet  Google Scholar 

  5. Anh, C.T., Trang, P.T.: Decay rate of solutions to the 3D Navier–Stokes–Voigt equations in \(H^m\) space. Appl. Math. Lett. 61, 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4, 823–848 (2006)

    Article  MathSciNet  Google Scholar 

  7. Casas, E., Chrysafinos, K.: A discontinuous Galerkin time-stepping scheme for the velocity tracking problem. SIAM J. Numer. Anal. 50, 2281–2306 (2012)

    Article  MathSciNet  Google Scholar 

  8. Casas, E., Chrysafinos, K.: Error estimates for the discretization of the velocity tracking problem. Numer. Math. 130, 615–643 (2015)

    Article  MathSciNet  Google Scholar 

  9. Casas, E., Chrysafinos, K.: Analysis of the velocity tracking control problem for the 3D evolutionary Navier–Stokes equations. SIAM J. Control Optim. 54, 99–128 (2016)

    Article  MathSciNet  Google Scholar 

  10. Casas, E., Chrysafinos, K.: Error estimates for the approximation of the velocity tracking problem with bang-bang controls. ESAIM Control Optim. Calc. Var. 23, 1267–1291 (2017)

    Article  MathSciNet  Google Scholar 

  11. Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier–Stokes equations. SIAM J. Control Optim. 46, 952–982 (2007)

    Article  MathSciNet  Google Scholar 

  12. Chrysafinos, K., Walkington, N.J.: Discontinuous Galerkin approximations of the Stokes and Navier–Stokes equations. Math. Comput. 79, 2135–2167 (2010)

    Article  MathSciNet  Google Scholar 

  13. Conti-Zelati, M., Gal, C.G.: Singular limits of Voigt models in fluid dynamics. J. Math. Fluid Mech. 17, 233–259 (2015)

    Article  MathSciNet  Google Scholar 

  14. Contantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

    Google Scholar 

  15. Damázio, P.D., Manholi, P., Silvestre, A.L.: \(L^q\)-theory of the Kelvin–Voigt equations in bounded domains. J. Differ. Equ. 260, 8242–8260 (2016)

    Article  Google Scholar 

  16. Deckelnick, K., Hinze, M.: Semidiscretization and error estimates for distributed control of the instationary Navier–Stokes equations. Numer. Math. 97, 297–320 (2004)

    Article  MathSciNet  Google Scholar 

  17. Ebrahimi, M.A., Holst, M., Lunasin, E.: The Navier–Stokes–Voight model for image inpainting. IMA J. Appl. Math. 78, 869–894 (2013)

    Article  MathSciNet  Google Scholar 

  18. García-Luengo, J., Marín-Rubio, P., Real, J.: Pullback attractors for three-dimensional non-autonomous Navier–Stokes–Voigt equations. Nonlinearity 25, 905–930 (2012)

    Article  MathSciNet  Google Scholar 

  19. Girault, P., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  20. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Advances in Design and Control. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  21. Gunzburger, M.D., Manservisi, S.: Analysis and approximation of the velocity tracking problem for Navier–Stokes flows with distributed control. SIAM J. Numer. Anal. 37, 1481–1512 (2000)

    Article  MathSciNet  Google Scholar 

  22. Gunzburger, M.D., Manservisi, S.: The velocity tracking problem for Navier–Stokes flows with boundary controls. SIAM J. Control Optim. 39, 594–634 (2000)

    Article  MathSciNet  Google Scholar 

  23. Hinze, M.: Optimal and instantaneous control of the instationary Navier–Stokes equations, Habilitationsschrift, Fachbereich Mathematik, Technische Universit’at Berlin (2000)

  24. Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MathSciNet  Google Scholar 

  25. Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40, 925–946 (2001)

    Article  MathSciNet  Google Scholar 

  26. Holst, M., Lunasin, E., Tsogtgerel, G.: Analysis of a general family of regularized Navier–Stokes and MHD models. J. Nonlinear Sci. 20, 523–567 (2010)

    Article  MathSciNet  Google Scholar 

  27. Kalantarov, V.K., Titi, E.S.: Global attractor and determining modes for the 3D Navier–Stokes–Voight equations. Chin. Ann. Math. Ser. B 30, 697–714 (2009)

    Article  MathSciNet  Google Scholar 

  28. Niche, C.J.: Decay characterization of solutions to Navier–Stokes–Voigt equations in term of the initial datum. J. Differ. Equ. 260, 4440–4453 (2016)

    Article  MathSciNet  Google Scholar 

  29. Oskolkov, A.P.: The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Nauchn. Semin. LOMI 38, 98–136 (1973)

    MathSciNet  Google Scholar 

  30. Qin, Y., Yang, X., Liu, X.: Averaging of a 3D Navier–Stokes–Voigt equations with singularly oscillating forces. Nonlinear Anal. Real World Appl. 13, 893–904 (2012)

    Article  MathSciNet  Google Scholar 

  31. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  32. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  33. Sritharan, S.S.: Optimal Control of Viscous Flow. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  34. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, 2nd edn. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  35. Tröltzsch, F., Wachsmuth, D.: Second-order sufficient optimality conditions for the optimal control of Navier–Stokes equations. ESAIM: COCV 12, 93–119 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Wachsmuth, D.: Optimal control of the unsteady Navier–Stokes equations. PhD thesis, TU Berlin (2006)

  37. Yue, G., Zhong, C.K.: Attractors for autonomous and nonautonomous 3D Navier–Stokes–Voight equations. Discret. Cont. Dyn. Syst. Ser. B 16, 985–1002 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Zhao, C., Zhu, H.: Upper bound of decay rate for solutions to the Navier–Stokes–Voigt equations in \(\mathbb{R}^3\). Appl. Math. Comput. 256, 183–191 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for the helpful comments and suggestions, which improved the presentation of the paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.02-2018.303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cung The Anh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, C.T., Nguyet, T.M. Discontinuous Galerkin approximations for an optimal control problem of three-dimensional Navier–Stokes–Voigt equations. Numer. Math. 145, 727–769 (2020). https://doi.org/10.1007/s00211-020-01132-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01132-0

Mathematics Subject Classification

Navigation