Skip to main content
Log in

Two exponential-type integrators for the “good” Boussinesq equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We introduce two exponential-type integrators for the “good” Boussinesq equation. They are of orders one and two, respectively, and they require lower spatial regularity of the solution compared to classical exponential integrators. For the first integrator, we prove first-order convergence in \(H^r\) for solutions in \(H^{r+1}\) with \(r>1/2\). This new integrator even converges (with lower order) in \(H^r\) for solutions in \(H^r\), i.e., without any additional smoothness assumptions. For the second integrator, we prove second-order convergence in \(H^r\) for solutions in \(H^{r+3}\) with \(r>1/2\) and convergence in \(L^2\) for solutions in \(H^3\). Numerical results are reported to illustrate the established error estimates. The experiments clearly demonstrate that the new exponential-type integrators are favorable over classical exponential integrators for initial data with low regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baldi, P.: Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 33–77 (2013)

    Article  MathSciNet  Google Scholar 

  2. Baumstark, S., Schratz, K.: Uniformly accurate oscillatory integrators for the Klein–Gordon–Zakharov system from low- to high-plasma frequency regimes. SIAM J. Numer. Anal. 57, 429–457 (2019)

    Article  MathSciNet  Google Scholar 

  3. Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein–Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87, 1227–1254 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. 3, 209–262 (1993)

    Article  MathSciNet  Google Scholar 

  5. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  6. Bratsos, A.: A second order numerical scheme for the solution of the one-dimensional Boussinesq equation. Numer. Algorithms 46, 45–58 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31, 202–224 (2015)

    Article  MathSciNet  Google Scholar 

  8. De Frutos, J., Ortega, T., Sanz-Serna, J.M.: Pseudospectral method for the “good” Boussinesq equation. Math. Comput. 57, 109–122 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Dehghan, M., Salehi, R.: A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation. Appl. Math. Model. 36, 1939–1956 (2012)

    Article  MathSciNet  Google Scholar 

  10. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177–189 (1979)

    Article  MathSciNet  Google Scholar 

  11. Fang, Y., Grillakis, M.: Existence and uniqueness for Boussinesq type equations on a circle. Commun. Partial Differ. Equ. 21, 1253–1277 (1996)

    Article  MathSciNet  Google Scholar 

  12. Farah, L.G.: Local solutions in Sobolev spaces with negative indices for the “good” Boussinesq equation. Commun. Partial Differ. Equ. 34, 52–73 (2009)

    Article  MathSciNet  Google Scholar 

  13. Farah, L.G., Scialom, M.: On the periodic “good” Boussinesq equation. Proc. Am. Math. Soc. 138, 953–964 (2010)

    Article  MathSciNet  Google Scholar 

  14. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  Google Scholar 

  15. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  16. Hofmanová, M., Schratz, K.: An exponential-type integrator for the KdV equation. Numer. Math. 136, 1117–1137 (2017)

    Article  MathSciNet  Google Scholar 

  17. Holden, H., Lubich, C., Risebro, N.: Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comput. 82, 173–185 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kishimoto, N.: Sharp local well-posedness for the “good” Boussinesq equation. J. Differe. Equ. 254, 2393–2433 (2013)

    Article  MathSciNet  Google Scholar 

  19. Knöller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. arXiv:1807.01254 (2018)

  20. Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  Google Scholar 

  21. Manoranjan, V.S., Mitchell, A., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Comput. 5, 946–957 (1984)

    Article  MathSciNet  Google Scholar 

  22. Manoranjan, V.S., Ortega, T., Sanz-Serna, J.M.: Soliton and antisoliton interactions in the “good” Boussinesq equation. J. Math. Phys. 29, 1964–1968 (1988)

    Article  MathSciNet  Google Scholar 

  23. Oh, S., Stefanov, A.: Improved local well-posedness for the periodic “good” Boussinesq equation. J. Differ. Equ. 254, 4047–4065 (2013)

    Article  MathSciNet  Google Scholar 

  24. Ortega, T., Sanz-Serna, J.M.: Nonlinear stability and convergence of finite-difference methods for the “good” Boussinesq equation. Numer. Math. 58, 215–229 (1990)

    Article  MathSciNet  Google Scholar 

  25. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)

    Article  MathSciNet  Google Scholar 

  26. Wang, H., Esfahani, A.: Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation. Nonlinear Anal. 89, 267–275 (2013)

    Article  MathSciNet  Google Scholar 

  27. Yan, J., Zhang, Z.: New energy-preserving schemes using Hamiltonian boundary value and Fourier pseudospectral methods for the numerical solution of the “good” Boussinesq equation. Comput. Phys. Commun. 201, 33–42 (2016)

    Article  MathSciNet  Google Scholar 

  28. Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the “good” Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)

    Article  MathSciNet  Google Scholar 

  29. Zhang, C., Huang, J., Wang, C., Yue, X.: On the operator splitting and integral equation preconditioned deferred correction methods for the “good” Boussinesq equation. J. Sci. Comput. 75, 687–712 (2018)

    Article  MathSciNet  Google Scholar 

  30. Zhao, X.: On error estimates of an exponential wave integrator sine pseudospectral method for the Klein–Gordon–Zakharov system. Numer. Methods Partial Differ. Equ. 32, 266–291 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Classical exponential integrators

Appendix: Classical exponential integrators

For the purpose of a reference solution and as benchmark for comparisons, we make use of the classical exponential integrators by Gautschi and Deuflhard [10, 14, 15, 30]. In this appendix, we shortly recall these integrators and their application to the GB equation.

Applying Duhamel’s formula to (2.1), we get

$$\begin{aligned} z(t_n+s)&=\cos (s\langle \partial _x^2\rangle )z(t_n)+\frac{\sin (s\langle \partial _x^2\rangle )}{\langle \partial _x^2\rangle } z_t(t_n)\\&\quad +\frac{1}{\langle \partial _x^2\rangle }\int _0^s \sin ((s-y)\langle \partial _x^2\rangle )(z^2)_{xx}(t_n+y)\mathrm{d}y,\\ z_t(t_n+s)&=-\langle \partial _x^2\rangle \sin (s\langle \partial _x^2\rangle )z(t_n)+\cos (s\langle \partial _x^2\rangle )z_t(t_n)\\&\quad +\int _0^s \cos ((s-y)\langle \partial _x^2\rangle )(z^2)_{xx}(t_n+y)\mathrm{d}y, \end{aligned}$$

where \(\langle \partial _x^2\rangle = \sqrt{\partial _x^4-\partial _x^2}\). Approximating the integral in different ways, we obtain the following three exponential integrators.

Gautschi 1 EI Setting \(s=\tau \) and replacing \((z^2)_{xx}(t_n+y)\) by \((z^2)_{xx}(t_n)\) in the integrals leads to the following one-step scheme of first order (e.g., [15, Example 3.11]):

$$\begin{aligned} z^{n+1}&=\cos (\tau \langle \partial _x^2\rangle )z^n+\frac{\sin (\tau \langle \partial _x^2\rangle )}{\langle \partial _x^2\rangle } z_t^n+\frac{\tau ^2}{2}\mathrm {sinc}^2\left( \frac{\tau }{2}\langle \partial _x^2\rangle \right) ((z^n)^2)_{xx},\\ z_t^{n+1}&=-\langle \partial _x^2\rangle \sin (\tau \langle \partial _x^2\rangle )z^n+\cos (\tau \langle \partial _x^2\rangle )z_t^n+\tau \mathrm {sinc}(\tau \langle \partial _x^2\rangle )((z^n)^2)_{xx},\quad n\ge 0. \end{aligned}$$

Gautschi 2 EI Setting \(s=\pm \tau \), replacing \((z^2)_{xx}(t_n\pm y)\) by \((z^2)_{xx}(t_n)\) and adding up yields the following symmetric two-step scheme of second order (e.g., [15, Example 3.11]):

$$\begin{aligned} z^{n+1}=&-z^{n-1}+2\cos (\tau \langle \partial _x^2\rangle )z^n+\tau ^2\mathrm {sinc}^2\left( \frac{\tau }{2}\langle \partial _x^2\rangle \right) ((z^n)^2)_{xx},\quad n\ge 1,\\ z^{1}=&\cos (\tau \langle \partial _x^2\rangle )z^0+\frac{\sin (\tau \langle \partial _x^2\rangle )}{\langle \partial _x^2\rangle } z_t^0+\frac{\tau ^2}{2}\mathrm {sinc}^2\left( \frac{\tau }{2}\langle \partial _x^2\rangle \right) ((z^0)^2)_{xx}. \end{aligned}$$

Deuflhard 2 EI Setting \(s=\tau \) and approximating the integrals by using the trapezoidal rule, one gets the one-step scheme of second-order for \(n\ge 0\) as follows (e.g., [15, Example 3.12]):

$$\begin{aligned} z^{n+1}&=\cos (\tau \langle \partial _x^2\rangle )z^n+\frac{\sin (\tau \langle \partial _x^2\rangle )}{\langle \partial _x^2\rangle } z_t^n+\frac{\tau ^2}{2}\mathrm {sinc}\left( \tau \langle \partial _x^2\rangle \right) ((z^n)^2)_{xx},\\ z_t^{n+1}&=-\langle \partial _x^2\rangle \sin (\tau \langle \partial _x^2\rangle )z^n+\cos (\tau \langle \partial _x^2\rangle )z_t^n\\&\quad +\frac{\tau }{2}\left[ \cos (\tau \langle \partial _x^2\rangle )((z^n)^2)_{xx}+ ((z^{n+1})^2)_{xx}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostermann, A., Su, C. Two exponential-type integrators for the “good” Boussinesq equation. Numer. Math. 143, 683–712 (2019). https://doi.org/10.1007/s00211-019-01064-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01064-4

Mathematics Subject Classification

Navigation