Abstract
We present in this paper a time parallel algorithm for \({\dot{u}}=f(t,u)\) with initial-value \(u(0)=u_0\), by using the waveform relaxation (WR) technique, and the diagonalization technique. With a suitable parameter \(\alpha \), the WR technique generates a functional sequence \(\{u^k(t)\}\) via the dynamic iterations \({\dot{u}}^k=f(t,u^k)\), \(u^k(0)=\alpha u^k(T)-\alpha u^{k-1}(T)+u_0\), and at convergence we get \(u^{\infty }(t)=u(t)\). Each WR iterate represents a periodic-like differential equation, which is very suitable for applying the diagonalization technique yielding direct parallel-in-time computation. The parameter \(\alpha \) controls both the roundoff error arising from the diagonalization procedure and the convergence factor of the WR iterations, and we perform a detailed analysis for the influence of the parameter \(\alpha \) on the method. We show that the roundoff error is proportional to \(\epsilon (2N+1)\max \{|\alpha |^2, |\alpha |^{-2}\}\) (\(N=T/\varDelta t\) and \(\epsilon \) is the machine precision), and the convergence factor can be bounded by \(|\alpha |e^{-TL}/(1-|\alpha |e^{-TL})\), where \(L\ge 0\) is the one-sided Lipschitz constant of f. We also perform a convergence analysis at the discrete level and the effect of temporal discretizations is explored. Our analysis includes the heat and wave equations as special cases. Numerical results are given to support our findings.
This is a preview of subscription content, access via your institution.
















Notes
This choice may be not optimal in practice.
According to [18, Section 5], the communication cost for the parallel implementation of FFT is negligible.
References
Averbuch, A., Gabber, E., Gordissky, B., Medan, Y.: A parallel FFT on an MIMD machine. Parallel Comput. 15, 61–74 (1990)
Cooley, J.C., Tukey, J.W.: An algorithm for the machine computation of complex Fourier series. Math. Comput. 19, 291–301 (1965)
Chen, S., Kuck, D.: Time and parallel processor bounds for linear recurrence systems. IEEE Trans. Comput. C–24(7), 701–717 (1975)
Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36, C635–C661 (2014)
Gupta, A., Kumar, V.: The scalability of FFT on parallel computers. IEEE Trans. Parallel Distrib. Syst. 4, 922–932 (1993)
Gander, M.J., Halpern, L., Ryan, J., Tran, T.T.B.: A direct solver for time parallelization. In: Domain Decomposition Methods in Science and Engineering XXII, pp. 491–499. Springer, Berlin (2016)
Gander, M.J., Halpern, L.: Time parallelization for nonlinear problems based on diagonalization. In: Domain Decomposition Methods in Science and Engineering XXIII, pp. 163–170. Springer, Berlin (2017)
Gander, M.J., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38, A2173–A2208 (2016)
Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29, 556–578 (2007)
Gander, M.J., Güttel, S.: PARAEXP: a parallel integrator for linear initial-value problems. SIAM J. Sci. Comput. 35, C123–C142 (2013)
Gander, M.J., Jiang, Y.L., Song, B., Zhang, H.: Analysis of two parareal algorithms for time-periodic problems. SIAM J. Sci. Comput. 35, A2393–A2415 (2013)
Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition, pp. 69–114. Springer, Berlin (2015)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)
Gander, M.J., Al-Khaleel, M., Ruehli, A.E.: Optimized waveform relaxation methods for longitudinal partitioning of transmission lines. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 1732–1743 (2009)
Horton, G., Vandewalle, S., Worley, P.: An algorithm with polylog parallel complexity for solving parabolic partial differential equations. SIAM J. Sci. Comput. 16, 531–541 (1995)
Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16, 848–864 (1995)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)
Inda, M.A., Bisseling, R.H.: A simple and efficient parallel FFT algorithm using the BSP model. Parallel Comput. 27, 1847–1878 (2001)
Johnsson, S.L., Krawitz, R.L.: Cooley-Tukey FFT on the connection machine. Parallel Comput. 18, 1201–1221 (1992)
Janssen, J., Vandewalle, S.: Multigrid waveform relaxation of spatial finite element meshes: the continuous-time case. SIAM J. Numer. Anal. 33, 456–474 (1996)
Janssen, J., Vandewalle, S.: Multigrid waveform relaxation on spatial finite element meshes: the discrete-time case. SIAM J. Sci. Comput. 17, 133–155 (1996)
Jiang, Y.L.: The Waveform Relaxation Methods (in Chinese). Science Press, Beijing (2009)
Kogge, E.: Parallel solution of recurrence problems. IBM J. Res. Dev. 18, 138–148 (1974)
Kogge, E., Stone, S.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput. C–22, 786–793 (1973)
Lubich, C., Ostermann, A.: Multigrid dynamic iteration for parabolic equations. BIT 27, 216–234 (1987)
Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst, 1, 131–145 (1982)
López-Fernández, C.: Palencia, and Schädle, A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)
Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Paris Sér. I Math. 332, 661–668 (2001)
McDonald, E., Wathen, A.: A simple proposal for parallel computation over time of an evolutionary process with implicit time stepping. Lect. Notes Comput. Sci. Eng. 112, 285–293 (2016)
Miekkala, U., Nevanlinna, O.: Convergence of dynamic iteration methods for initial value problems. SIAM J. Sci. Stat. Comput. 8, 459–482 (1987)
Maday, Y., Rønquist, E.M.: Parallelization in time through tensor product space-time solvers. C. R. Math. Acad. Sci. Paris 346, 113–118 (2008)
Minion, M.L., Speck, R., Bolten, M., Emmett, M., Ruprecht, D.: Interweaving PFASST and parallel multigrid. SIAM J. Sci. Comput. 37, S244–S263 (2015)
Mclean, W., Sloan, I.H., Thomée, V.: Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102, 497–522 (2006)
Mclean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)
Nevanlinna, O.: Remarks on Picard-Lindelöf iterations, part I. BIT 29, 328–346 (1989)
Nevanlinna, O.: Remarks on Picard-Lindelöf iterations, part II. BIT 29, 535–562 (1989)
Pippig, M.: PFFT: an extension of FFTW to massively parallel architectures. SIAM J. Sci. Comput. 35, C213–C236 (2013)
Ruehli, A.E., Johnson, T.A.: Circuit Analysis Computing by Waveform Relaxation, in Wiley Encyclopedia of Electrical Electronics Engineering. Wiley, New York (1999)
Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. 69, 177–195 (1999)
Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)
Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia (1992)
Vandewalle, S., Piessens, R.: Numerical experiments with nonlinear multigrid waveform relaxation on a parallel processor. Appl. Numer. Math. 8, 149–161 (1991)
Vandewalle, S.: Parallel Multigrid Waveform Relaxation for Parabolic Problems. B. G. Teubner, Stuttgart (1993)
Vandewalle, S., Piessens, R.: Efficient parallel algorithms for solving initial-boundary value and time-periodic parabolic partial differential equations. SIAM J. Sci. Stat. Comput. 13, 1330–1346 (1992)
Wu, S.L.: Laplace inversion for the solution of an abstract heat equation without the forward transform of the source term. J. Numer. Math. 25, 185–198 (2017)
Wu, S.L., Zhou, T.: Convergence analysis for three parareal solvers. SIAM J. Sci. Comput. 37, A970–A992 (2015)
Wu, S.L.: Toward parallel coarse grid correction for the parareal algorithm. SIAM J. Sci. Comput. 40, A1446–A1472 (2018)
Wu, S.L., Zhou, T.: A diagonalization-based multi-grid method for time-periodic fractional diffusion equations. Numer. Linear Algebra Appl. 25, e2178 (2018). https://doi.org/10.1002/nla.2178
Acknowledgements
The authors are very grateful to the anonymous referees for their careful reading of a preliminary version of the manuscript and their valuable suggestions, which greatly improved the quality of this paper. The second author is supported by the NSF of China (No. 11771313).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Corresponding author: Shu-Lin Wu.
Appendix
Appendix
The main notations and symbols of this paper are listed in the following table.
A | Coefficient matrix | \(\theta \) | Linear \(\theta \)-method (\(\theta =1\) or \(\theta =\frac{1}{2}\)) |
T | Length of time interval | \(\varDelta t\) | Time step-size |
N | Number of time steps | \(\varDelta x\) | Space mesh-size |
m | Dimension of IVP | Cond(\(\cdot \)) | Condition number of a matrix |
\(\omega \) | Opening angle of sector | L | Lipschitz constant |
\(\mu \) | Eigenvalue of A | \(\varepsilon \) | Tolerance for WR iterations |
\(\eta _0\) | Minimal real part of \(\mu (A)\) | \(\epsilon \) | Machine precision |
\(\eta \) | \(\eta =\eta _0T\) | \(\rho \) | Convergence factor (continuous) |
\({\tilde{\eta }}\) | \({\tilde{\eta }}=\eta _0\varDelta t\) | \({\tilde{\rho }}\) | Convergence factor (discrete) |
\(\alpha \) | Parameter used in WR iteration | \(I_t\) | \(I_t\in {\mathbb {R}}^{N\times N}\) is an identity matrix |
k | Index of WR iteration | \(I_x\) | \(I_t\in {\mathbb {R}}^{m\times m}\) is an identity matrix |
Rights and permissions
About this article
Cite this article
Gander, M.J., Wu, SL. Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique. Numer. Math. 143, 489–527 (2019). https://doi.org/10.1007/s00211-019-01060-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-019-01060-8