Skip to main content
Log in

Analysis of fully discrete FEM for miscible displacement in porous media with Bear–Scheidegger diffusion tensor

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Fully discrete Galerkin finite element methods are studied for the equations of miscible displacement in porous media with the commonly-used Bear–Scheidegger diffusion–dispersion tensor:

$$\begin{aligned} D(\mathbf{u}) = \gamma d_m I + |\mathbf{u}|\bigg ( \alpha _T I + (\alpha _L - \alpha _T) \frac{\mathbf{u} \otimes \mathbf{u}}{|\mathbf{u}|^2}\bigg ) \, . \end{aligned}$$

Previous works on optimal-order \(L^\infty (0,T;L^2)\)-norm error estimate required the regularity assumption \(\nabla _x\partial _tD(\mathbf{u}(x,t)) \in L^\infty (0,T;L^\infty (\Omega ))\), while the Bear–Scheidegger diffusion–dispersion tensor is only Lipschitz continuous even for a smooth velocity field \(\mathbf{u}\). In terms of the maximal \(L^p\)-regularity of fully discrete finite element solutions of parabolic equations, optimal error estimate in \(L^p(0,T;L^q)\)-norm and almost optimal error estimate in \(L^\infty (0,T;L^q)\)-norm are established under the assumption of \(D(\mathbf{u})\) being Lipschitz continuous with respect to \(\mathbf{u}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  2. Akrivis, G., Li, B.: Maximum norm analysis of implicit-explicit backward difference formulas for nonlinear parabolic equations. IMA J. Numer. Anal. 38, 75–101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comput. 86, 1527–1552 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematic. Teubner, Stuttgart (1999)

    MATH  Google Scholar 

  5. Ashyralyev, A., Piskarev, S., Weis, L.: On well-posedness of difference schemes for abstract parabolic equations in \(L_p([0, T];E)\) spaces. Numer. Funct. Anal. Optim. 23, 669–693 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auscher, P., Qafsaoui, M.: Observations on \(W^{1, p}\) estimates for divergence elliptic equations with VMO coefficients. Bollettino dellUnione Matematica Italiana, Serie 8 5–B, 487509 (2002)

    MATH  Google Scholar 

  7. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Springer, New York (1990)

    Book  MATH  Google Scholar 

  8. Crouzeix, M.: Contractivity and analyticity in \(\ell ^p\) of some approximation of the heat equation. Numer. Algorithms 33, 193–201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \(W^{1, p}\) norm for finite element methods on graded meshes. Math. Comput. 81, 743–764 (2012)

    Article  MATH  Google Scholar 

  10. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numer. 17, 17–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988)

    Chapter  Google Scholar 

  12. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, X.: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194, 883–910 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. FreeFEM++, version 3.51. http://www.freefem.org/ (2017)

  16. Geissert, M.: Discrete maximal \(L^p\) regularity for finite element operators. SIAM J. Numer. Anal. 44, 677–698 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geissert, M.: Applications of discrete maximal \(L^p\) regularity for finite element operators. Numer. Math. 108, 121–149 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  19. Hansbo, A.: Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT Numer. Math. 42, 351–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kashiwabara, T., Kemmochi, T.: Maximum norm error estimates for the finite element approximation of parabolic problems on smooth domains. Preprint, arXiv:1805.01336

  22. Kemmochi, T., Saito, N.: Discrete maximal regularity and the finite element method for parabolic equations. Numer. Math. 38, 905–937 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kovács, B., Li, B., Lubich, C.: \(A\)-stability implies discrete maximal parabolic regularity. SIAM J. Numer. Anal. 54, 3600–3624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kunstmann, P.C., Li, B., Lubich, C.: Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity. Comput. Math. Found. (2017). https://doi.org/10.1007/s10208-017-9364-x

  25. Leykekhman, D.: Pointwise localized error estimates for parabolic finite element equations. Numer. Math. 96, 583–600 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leykekhman, D., Vexler, B.: Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135, 923–952 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, B.: Maximum-norm stability and maximal \(L^p\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math. 131, 489–516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Li, B., Sun, W.: Regularity of the diffusion–dispersion tensor and error analysis of FEMs for a porous media flow. SIAM J. Numer. Anal. 53, 1418–1437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, B., Sun, W.: Maximal regularity of fully discrete finite element solution of parabolic equations. SIAM J. Numer. Anal. 55, 521–542 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, B., Sun, W.: Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comput. 86, 1071–1102 (2017)

    Article  MATH  Google Scholar 

  32. Li, B., Sun, W.: Maximal \( L^p\) error analysis of FEMs for nonlinear parabolic equations with nonsmooth coefficients. Int. J. Numer. Anal. Model. 14, 670–687 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Li, B., Wang, J., Sun, W.: The stability and convergence of fully discrete Galerkin FEMs for incompressible miscible flows in porous media. Commun. Comput. Phys. 15, 1141–1158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieberman, G.M.: Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd, Copyright 1996, Singapore. Reprinted in (2005)

  35. Lieberman, G.M.: Oblique Derivative Problems for Elliptic Equations. World Scientific Publishing Co Pte. Ltd, Singapore (2013)

    Book  MATH  Google Scholar 

  36. Lin, Y.: On maximum norm estimates for Ritz-Volterra projection with applications to some time dependent problems. J. Comput. Math. 15, 159–178 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Lin, Y., Thomée, V., Wahlbin, L.B.: Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28, 1047–1070 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel (1995)

    Book  MATH  Google Scholar 

  39. Nitsche, J.A., Wheeler, M.F.: \(L_\infty \)-boundedness of the finite element Galerkin operator for parabolic problems. Numer. Funct. Anal. Optim. 4, 325–353 (1981/1982)

  40. Palencia, C.: Maximum norm analysis of completely discrete finite element methods for parabolic problems. SIAM J. Numer. Anal. 33, 1654–1668 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schatz, A.H., Thomée, V., Wahlbin, L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33, 265–304 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schatz, A.H., Thomée, V., Wahlbin, L.B.: Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations. Comm. Pure Appl. Math. 51, 1349–1385 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Scheidegger, A.E.: The Physics of Flow Through Porous Media. The MacMillan Company, New York (1957)

    MATH  Google Scholar 

  44. Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52, 273–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, J., Si, Z., Sun, W.: A new error analysis on characteristic methods for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 52, 3300–3020 (2014)

    Google Scholar 

  48. Wheeler, M.F.: A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

  49. Yang, J., Du, Q., Zhang, W.: Uniform \(L^p\)-bound of the Allen–Cahn equation and its numerical discretization. Int. J. Numer. Anal. Model. 15, 213–227 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wentao Cai: The research of this author was supported in part by a Hong Kong RGC Grant (15301818).

Buyang Li: The research of this author was supported in part by an internal grant of The Hong Kong Polytechnic University (project code 1-ZE6L) and a Hong Kong RGC Grant (15301818).

Yanping Lin: The research of this author was supported in part by a Hong Kong RGC Grant (15302418).

Weiwei Sun: The research of this author was supported in part by the Zhujiang Scholar program, a grant from South China Normal University and a Hong Kong RGC Grant (CityU 11300517).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Li, B., Lin, Y. et al. Analysis of fully discrete FEM for miscible displacement in porous media with Bear–Scheidegger diffusion tensor. Numer. Math. 141, 1009–1042 (2019). https://doi.org/10.1007/s00211-019-01030-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01030-0

Navigation