Abstract
Fully discrete Galerkin finite element methods are studied for the equations of miscible displacement in porous media with the commonly-used Bear–Scheidegger diffusion–dispersion tensor:
Previous works on optimal-order \(L^\infty (0,T;L^2)\)-norm error estimate required the regularity assumption \(\nabla _x\partial _tD(\mathbf{u}(x,t)) \in L^\infty (0,T;L^\infty (\Omega ))\), while the Bear–Scheidegger diffusion–dispersion tensor is only Lipschitz continuous even for a smooth velocity field \(\mathbf{u}\). In terms of the maximal \(L^p\)-regularity of fully discrete finite element solutions of parabolic equations, optimal error estimate in \(L^p(0,T;L^q)\)-norm and almost optimal error estimate in \(L^\infty (0,T;L^q)\)-norm are established under the assumption of \(D(\mathbf{u})\) being Lipschitz continuous with respect to \(\mathbf{u}\).
Similar content being viewed by others
References
Adams, R.A., Fournier, J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003)
Akrivis, G., Li, B.: Maximum norm analysis of implicit-explicit backward difference formulas for nonlinear parabolic equations. IMA J. Numer. Anal. 38, 75–101 (2018)
Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comput. 86, 1527–1552 (2017)
Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematic. Teubner, Stuttgart (1999)
Ashyralyev, A., Piskarev, S., Weis, L.: On well-posedness of difference schemes for abstract parabolic equations in \(L_p([0, T];E)\) spaces. Numer. Funct. Anal. Optim. 23, 669–693 (2002)
Auscher, P., Qafsaoui, M.: Observations on \(W^{1, p}\) estimates for divergence elliptic equations with VMO coefficients. Bollettino dellUnione Matematica Italiana, Serie 8 5–B, 487509 (2002)
Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Springer, New York (1990)
Crouzeix, M.: Contractivity and analyticity in \(\ell ^p\) of some approximation of the heat equation. Numer. Algorithms 33, 193–201 (2003)
Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \(W^{1, p}\) norm for finite element methods on graded meshes. Math. Comput. 81, 743–764 (2012)
Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numer. 17, 17–33 (1983)
Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988)
Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)
Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)
Feng, X.: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194, 883–910 (1995)
FreeFEM++, version 3.51. http://www.freefem.org/ (2017)
Geissert, M.: Discrete maximal \(L^p\) regularity for finite element operators. SIAM J. Numer. Anal. 44, 677–698 (2006)
Geissert, M.: Applications of discrete maximal \(L^p\) regularity for finite element operators. Numer. Math. 108, 121–149 (2007)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)
Hansbo, A.: Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT Numer. Math. 42, 351–379 (2002)
Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)
Kashiwabara, T., Kemmochi, T.: Maximum norm error estimates for the finite element approximation of parabolic problems on smooth domains. Preprint, arXiv:1805.01336
Kemmochi, T., Saito, N.: Discrete maximal regularity and the finite element method for parabolic equations. Numer. Math. 38, 905–937 (2018)
Kovács, B., Li, B., Lubich, C.: \(A\)-stability implies discrete maximal parabolic regularity. SIAM J. Numer. Anal. 54, 3600–3624 (2016)
Kunstmann, P.C., Li, B., Lubich, C.: Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity. Comput. Math. Found. (2017). https://doi.org/10.1007/s10208-017-9364-x
Leykekhman, D.: Pointwise localized error estimates for parabolic finite element equations. Numer. Math. 96, 583–600 (2004)
Leykekhman, D., Vexler, B.: Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135, 923–952 (2017)
Li, B.: Maximum-norm stability and maximal \(L^p\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math. 131, 489–516 (2015)
Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)
Li, B., Sun, W.: Regularity of the diffusion–dispersion tensor and error analysis of FEMs for a porous media flow. SIAM J. Numer. Anal. 53, 1418–1437 (2015)
Li, B., Sun, W.: Maximal regularity of fully discrete finite element solution of parabolic equations. SIAM J. Numer. Anal. 55, 521–542 (2017)
Li, B., Sun, W.: Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comput. 86, 1071–1102 (2017)
Li, B., Sun, W.: Maximal \( L^p\) error analysis of FEMs for nonlinear parabolic equations with nonsmooth coefficients. Int. J. Numer. Anal. Model. 14, 670–687 (2017)
Li, B., Wang, J., Sun, W.: The stability and convergence of fully discrete Galerkin FEMs for incompressible miscible flows in porous media. Commun. Comput. Phys. 15, 1141–1158 (2014)
Lieberman, G.M.: Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd, Copyright 1996, Singapore. Reprinted in (2005)
Lieberman, G.M.: Oblique Derivative Problems for Elliptic Equations. World Scientific Publishing Co Pte. Ltd, Singapore (2013)
Lin, Y.: On maximum norm estimates for Ritz-Volterra projection with applications to some time dependent problems. J. Comput. Math. 15, 159–178 (1997)
Lin, Y., Thomée, V., Wahlbin, L.B.: Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28, 1047–1070 (1991)
Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel (1995)
Nitsche, J.A., Wheeler, M.F.: \(L_\infty \)-boundedness of the finite element Galerkin operator for parabolic problems. Numer. Funct. Anal. Optim. 4, 325–353 (1981/1982)
Palencia, C.: Maximum norm analysis of completely discrete finite element methods for parabolic problems. SIAM J. Numer. Anal. 33, 1654–1668 (1996)
Schatz, A.H., Thomée, V., Wahlbin, L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33, 265–304 (1980)
Schatz, A.H., Thomée, V., Wahlbin, L.B.: Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations. Comm. Pure Appl. Math. 51, 1349–1385 (1998)
Scheidegger, A.E.: The Physics of Flow Through Porous Media. The MacMillan Company, New York (1957)
Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52, 273–298 (2005)
Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)
Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)
Wang, J., Si, Z., Sun, W.: A new error analysis on characteristic methods for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 52, 3300–3020 (2014)
Wheeler, M.F.: A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)
Yang, J., Du, Q., Zhang, W.: Uniform \(L^p\)-bound of the Allen–Cahn equation and its numerical discretization. Int. J. Numer. Anal. Model. 15, 213–227 (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Wentao Cai: The research of this author was supported in part by a Hong Kong RGC Grant (15301818).
Buyang Li: The research of this author was supported in part by an internal grant of The Hong Kong Polytechnic University (project code 1-ZE6L) and a Hong Kong RGC Grant (15301818).
Yanping Lin: The research of this author was supported in part by a Hong Kong RGC Grant (15302418).
Weiwei Sun: The research of this author was supported in part by the Zhujiang Scholar program, a grant from South China Normal University and a Hong Kong RGC Grant (CityU 11300517).
Rights and permissions
About this article
Cite this article
Cai, W., Li, B., Lin, Y. et al. Analysis of fully discrete FEM for miscible displacement in porous media with Bear–Scheidegger diffusion tensor. Numer. Math. 141, 1009–1042 (2019). https://doi.org/10.1007/s00211-019-01030-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-019-01030-0