Greedy optimal control for elliptic problems and its application to turnpike problems

Abstract

We adapt and apply greedy methods to approximate in an efficient way the optimal controls for parameterized elliptic control problems. Our results yield an optimal approximation procedure that, in particular, performs better than simply sampling the parameter-space to compute controls for each parameter value. The same method can be adapted for parabolic control problems, but this leads to greedy selections of the realizations of the parameters that depend on the initial datum under consideration. The turnpike property (which ensures that parabolic optimal control problems behave nearly in a static manner when the control horizon is long enough) allows using the elliptic greedy choice of the parameters in the parabolic setting too. We present various numerical experiments and an extensive discussion of the efficiency of our methodology for parabolic control and indicate a number of open problems arising when analyzing the convergence of the proposed algorithms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Allaire, G., Kelly, A.: Optimal design of low-contrast two-phase structures for the wave equation. Math. Models Methods Appl. Sci. 21(07), 1499–1538 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Atwell, J.A., King, B.B.: Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model. 33(1–3), 1–19 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Bader, E., Kärcher, M., Grepl, M.A., Veroy, K.: Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints. SIAM J. Sci. Comput. 38(6), A3921–A3946 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Boyd, A., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. 6.

    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, Berlin (2011)

    Google Scholar 

  7. 7.

    Buffa, A., Maday, Y., Patera, A.T., Prudhomme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parameterized reduced basis. Math. Model. Numer. Anal. 46, 595–603 (2012)

    MATH  Article  Google Scholar 

  8. 8.

    Carlson, D.A., Haurie, A., Jabrane, A.: Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals. SIAM J. Control Optim. 25, 1517–1541 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Choulli, M., Zuazua, E.: Lipschitz dependence of the coefficients on the resolvent and greedy approximation for scalar elliptic problems. C. R. Acad. Sci. Paris, Ser. I 354, 1174–1187 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. 36(1), 1–12 (2015)

    MathSciNet  Google Scholar 

  11. 11.

    Cohen, A., DeVore, R.: Approximation of high-dimensional parametric PDEs. Acta Numer. 24, 1–159 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Dedè, L.: Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32(2), 997–1019 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    DeVore, R.A.: The theoretical foundation of reduced basis methods. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and approximation: Theory and Algorithms, pp. 137–168. SIAM, Philadelphia, PA (2017)

    Google Scholar 

  14. 14.

    DeVore, R., Petrova, G., Wojtaszczyk, P.: Greedy algorithms for reduced bases in Banach spaces. Constr. Approx. 37, 455–466 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Evans, L.C.: Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  16. 16.

    Fernández-Cara, E., Zuazua, E.: Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincare (C) Non Linear Anal. 17(5), 583–616 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Fernández-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5(4–6), 465–514 (2000)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Fursikov, A., Imanuvilov, OY.: Controllability of evolution equations. Research Institute of Mathematics, Seoul National University, Korea, Lecture Notes (1996)

  19. 19.

    George, A., Liu, J.W.: Computer solution of large sparse positive definite. Prentice Hall, Upper Saddle River (1981)

    Google Scholar 

  20. 20.

    Grepl, M.A., Kärcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Math. 349(15–16), 873–877 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Glowinski, R., Lions, J.-L., He, J.: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  22. 22.

    Ito, K., Ravindran, S.: A reduced basis method for control problems governed by PDEs. In: Desch, W., Kappel F., Kunisch K. (eds.) Control and Estimation of Distributed Parameter System, Internat. Ser. Numer. Math. vol. 126, pp. 153–168. Birkhäuser, Basel (1998)

  23. 23.

    Ito, K., Ravindran, S.S.: Reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn. 15(2), 97–113 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Kärcher, M., Grepl, M.A.: A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM: Control Optim. Calc. Var. 20(2), 416–441 (2014)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Kärcher, M., Grepl, M.A.: A posteriori error estimation for reduced order solutions of parametrized parabolic optimal control problems. ESAIM: Math. Model. Numer. Anal. 48(6), 1615–1638 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Kunisch, K., Volkwein, S.: Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102(2), 345–371 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Kunisch, K., Volkwein, S., Xie, L.: HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701–722 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Lazar, M., Zuazua, E.: Greedy controllability of finite dimensional linear systems. Automatica 74, 327–340 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Google Scholar 

  30. 30.

    Negri, F., Rozza, G., Manzoni, A., Quarteroni, A.: Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35(5), A2316–A2340 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Porretta, A., Zuazua, E.: Long time versus steady state optimal control. SIAM J. Control Optim. 51(6), 4242–4273 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer, Berlin (2010)

    Google Scholar 

  33. 33.

    Ravindran, S.S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 34, 425–448 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical report (1994)

  35. 35.

    Trélat, E., Zuazua, E.: The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 258, 81–114 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44(1), 83–115 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Zaslavski, A.J.: Turnpike Properties in the Calculus of Variations and Optimal Control. Nonconvex Optimization and Its Applications, vol. 80. Springer, New York (2006)

    Google Scholar 

  38. 38.

    Zaslavski, A.J.: Existence and structure of optimal solutions of infinite-dimensional control problems. Appl. Math. Optim. 42, 291–313 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Zuazua, E.: Large time control and turnpike properties for wave equations. Annu. Rev. Control 44, 199–210 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Víctor Hernández-Santamaría.

Additional information

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 694126-DyCon). Part of this research was done while the second author visited DeustoTech and Univesity of Deusto with the support of the DyCon project. The second author was also partially supported by Croatian Science Foundation under ConDyS Project, IP-2016-06-2468. The work of the third author was partially supported by the Grants MTM2014-52347, MTM2017-92996 of MINECO (Spain) and ICON of the French ANR.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernández-Santamaría, V., Lazar, M. & Zuazua, E. Greedy optimal control for elliptic problems and its application to turnpike problems. Numer. Math. 141, 455–493 (2019). https://doi.org/10.1007/s00211-018-1005-z

Download citation

Mathematics Subject Classification

  • 49J20
  • 49K20
  • 93C20
  • 49N05
  • 65K10