Skip to main content
Log in

Generalized Taylor operators and polynomial chains for Hermite subdivision schemes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Hermite subdivision schemes act on vector valued data that is not only considered as functions values of a vector valued function from \(\mathbb {R}\) to \(\mathbb {R}^r\), but as evaluations of r consecutive derivatives of a function. This intuition leads to a mild form of level dependence of the scheme. Previously, we have proved that a property called spectral condition or sum rule implies a factorization in terms of a generalized difference operator that gives rise to a “difference scheme” whose contractivity governs the convergence of the scheme. But many convergent Hermite schemes, for example, those based on cardinal splines, do not satisfy the spectral condition. In this paper, we generalize the property in a way that preserves all the above advantages: the associated factorizations and convergence theory. Based on these results, we can include the case of cardinal splines in a systematic way and are also able to construct new types of convergent Hermite subdivision schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision Memoirs of the AMS, vol. 93(453). American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  2. Conti, C., Cotronei, M., Sauer, T.: Hermite subdivision schemes, exponential polynomial generation, and annihilators. Adv. Comput. Math. 42, 1055–1079 (2016). https://doi.org/10.1007/s10444-016-9453-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Conti, C., Cotronei, M., Sauer, T.: Convergence of level dependent Hermite subdivision schemes. Appl. Numer. Math. 116, 119–128 (2017). https://doi.org/10.1016/j.apnum.2017.02.011

    Article  MathSciNet  MATH  Google Scholar 

  4. Conti, C., Romani, L., Yoon, J.: Approximation order and approximate sum rules in subdivision. J. Approx. Theory 207, 380–401 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cotronei, M., Sissouno, N.: A note on Hermite multiwavelets with polynomial and exponential vanishing moments. Appl. Numer. Math. 120, 21–34 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubuc, S., Merrien, J.L.: Hermite subdivision schemes and Taylor polynomials. Constr. Approx. 29, 219–245 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyn, N., Levin, D.: Analysis of Hermite-type Subdivision Schemes. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory VIII, Vol 2: Wavelets and Multilevel Approximations, pp. 117–124. World Scientific, Singapore (1995)

    Google Scholar 

  8. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guglielmi, N., Manni, C., Vitale, D.: Convergence analysis of \({C}^2\) Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas. J. Math. Anal. Appl. 434, 884–902 (2011)

    MATH  Google Scholar 

  10. Han, B.: Vector cascade algorithms and refinable functions in sobolev spaces. J. Approx. Theory 124, 44–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Han, B., Overton, M.L., Yu, T.P.Y.: Design of Hermite subdivision schemes aided by spectral radius optimization. SIAM J. Sci. Comput. 25, 643–656 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, B., Yu, T., Xue, Y.: Noninterpolatory Hermite subdivision schemes. Math. Comput. 74, 1345–1367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jeong, B., Yoon, J.: Construction of Hermite subdivision schemes reproducing polynomials. J. Math. Anal. Appl. 451, 565–582 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Merrien, J.L., Sauer, T.: A generalized Taylor factorization for Hermite subdivisions schemes. J. Comput. Appl. Math. 236, 565–574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Merrien, J.L., Sauer, T.: From Hermite to stationary subdivision schemes in one and several variables. Adv. Comput. Math. 36, 547–579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Merrien, J.L., Sauer, T.: Extended Hermite subdivision schemes. J. Comput. Appl. Math. 317, 343–361 (2017). https://doi.org/10.1016/j.cam.2016.12.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Micchelli, C.A.: Mathematical Aspects of Geometric Modeling, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 65. SIAM, Philadelphia (1995)

    Google Scholar 

  18. Micchelli, C.A., Sauer, T.: On vector subdivision. Math. Z. 229, 621–674 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moosmüller, C.: \({C}^1\) analysis of Hermite subdivision schemes on manifolds. SIAM J. Numer. Anal. 54, 3003–3031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Sauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merrien, JL., Sauer, T. Generalized Taylor operators and polynomial chains for Hermite subdivision schemes. Numer. Math. 142, 167–203 (2019). https://doi.org/10.1007/s00211-018-0996-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0996-9

Mathematics Subject Classification

Navigation