Skip to main content
Log in

Force-based atomistic/continuum blending for multilattices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdulle, A., Lin, P., Shapeev, A.: Numerical methods for multilattices. Multiscale Model. Simul. 10(3), 696–726 (2012)

    Article  MathSciNet  Google Scholar 

  2. Abdulle, A., Lin, P., Shapeev, A.: A priori and a posteriori \({W}^{1,\infty }\) error analysis of a qc method for complex lattices. SIAM J. Numer. Anal. 51(4), 2357–2379 (2013)

    Article  MathSciNet  Google Scholar 

  3. Abraham, F., Broughton, J., Bernstein, N., Kaxiras, E.: Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett. 44(6), 783 (1998)

    Article  Google Scholar 

  4. Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69, 115415 (2004)

    Article  Google Scholar 

  5. Badia, S., Bochev, P., Gunzburger, M., Lehoucq, R., Parks, M.: Blending methods for coupling atomistic and continuum models. In: Fish, J. (ed.) Bridging the Scales in Science and Engineering, pp. 165–186. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  6. Badia, S., Bochev, P., Lehoucq, R., Parks, M., Fish, J., Nuggehally, M., Gunzburger, M.: A force-based blending model for atomistic-to-continuum coupling. Int. J. Multiscale Comput. Eng. 5(5), 387–406 (2007)

    Article  Google Scholar 

  7. Badia, S., Parks, M., Bochev, P., Gunzburger, M., Lehoucq, R.: On atomistic-to-continuum coupling by blending. Multiscale Model. Simul. 7(1), 381–406 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bauman, P., Ben Dhia, H., Elkhodja, N., Oden, J., Prudhomme, S., Prudhomme, S.: On the application of the Arlequin method to the coupling of particle and continuum models. Comput. Mech. 42, 511–530 (2008)

    Article  MathSciNet  Google Scholar 

  9. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices, 1st edn. Clarendon Press, Oxford (1954)

    MATH  Google Scholar 

  10. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (2008)

    MATH  Google Scholar 

  11. Cauchy, A.L.: De la pression ou la tension dans un systeme de points materiels. In: Exercices de Mathematiques (1828)

  12. Datta, D., Picu, C., Shephard, M.: Composite grid atomistic continuum method: an adaptive approach to bridge continuum with atomistic analysis. Int. J. Multiscale Comput. Eng. 2(3), 401 (2004)

    Article  Google Scholar 

  13. Dobson, M., Elliott, R., Luskin, M., Tadmor, E.: A multilattice quasicontinuum for phase transforming materials: Cascading Cauchy Born kinematics. J. Comput. Aided Mater. Des. 14(1), 219–237 (2007)

    Article  Google Scholar 

  14. Dobson, M., Luskin, M.: Analysis of a force-based quasicontinuum approximation. Esaim Math. Model. Numer. Anal. 42, 113–139, 0 (2008)

    Article  MathSciNet  Google Scholar 

  15. Dobson, M., Luskin, M., Ortner, C.: Sharp stability estimates for the force-based quasicontinuum approximation of homogeneous tensile deformation. Multiscale Model. Simul. 8(3), 782–802 (2010)

    Article  MathSciNet  Google Scholar 

  16. Lu, W .E.J., Yang, J.Z.: Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74, 214115 (2006)

    Article  Google Scholar 

  17. Ehrlacher, V., Ortner, C., Shapeev, A.V.: Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ration. Mech. Anal. 222(3), 1217–1268 (2016)

    Article  MathSciNet  Google Scholar 

  18. Eidel, B., Stukowski, A.: A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57(1), 87–108 (2009)

    Article  MathSciNet  Google Scholar 

  19. Ericksen, J.: On the Cauchy-Born rule. Math. Mech. Solids 13(3–4), 199–220 (2008)

    Article  MathSciNet  Google Scholar 

  20. Hubbard, J., Hubbard, B.: Vector calculus, linear algebra, and differential forms: a unified approach. Matrix Editions, fourth edition (2009)

  21. Hudson, T., Ortner, C.: Analysis of stable screw dislocation configurations in an anti-plane lattice model. SIAM J. Math. Anal. 41, 291–320 (2015)

    Article  Google Scholar 

  22. Van Koten, B., Ortner, C.: Symmetries of 2-lattices and second order accuracy of the Cauchy-Born model. SIAM Multiscale Model. Simul. 11, 615–634 (2013)

    Article  MathSciNet  Google Scholar 

  23. Li, X., Luskin, M., Ortner, C.: Positive definiteness of the blended force-based quasicontinuum method. Multiscale Model. Simul. 10(3), 1023–1045 (2012)

    Article  MathSciNet  Google Scholar 

  24. Li, X., Luskin, M., Ortner, C., Shapeev, A.V.: Theory-based benchmarking of the blended force-based quasicontinuum method. Comput. Methods Appl. Mech. Eng. 268, 763–781 (2014)

    Article  MathSciNet  Google Scholar 

  25. Li, X., Ortner, C., Shapeev, A.V., Van Koten, B.: Analysis of blended atomistic/continuum hybrid methods. Numer. Math. 134(2), 275–326 (2016)

    Article  MathSciNet  Google Scholar 

  26. Lu, J., Ming, P.: Convergence of a force-based hybrid method in three dimensions. Commun. Pure Appl. Math. 66(1), 83–108 (2013)

    Article  MathSciNet  Google Scholar 

  27. Lu, J., Ming, P.: Stability of a force-based hybrid method with planar sharp interface. SIAM J. Numer. Anal. 52, 2005–2026 (2014)

    Article  MathSciNet  Google Scholar 

  28. Luskin, M., Ortner, C.: Atomistic-to-continuum coupling. Acta Numerica 22, 397–508, 4 (2013)

    Article  MathSciNet  Google Scholar 

  29. Luskin, M., Ortner, C., Van Koten, B.: Formulation and optimization of the energy-based blended quasicontinuum method. Comput. Methods Appl. Mech. Eng. 253, 160–168 (2013)

    Article  MathSciNet  Google Scholar 

  30. Makridakis, C., Mitsoudis, D., Rosakis, P.: On atomistic-to-continuum couplings without ghost forces in three dimensions. Appl. Math. Res. Express 2014(1), 87–113 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Miller, R., Tadmor, E.: A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17(5), 053001 (2009)

    Article  Google Scholar 

  32. Olson, D.: Formulation and Analysis of an Optimization-Based Atomistic-to-Continuum Coupling Algorithm. PhD thesis, University of Minnesota (2015)

  33. Olson, D., Bochev, P., Luskin, M., Shapeev, A.: Development of an optimization-based atomistic-to-continuum coupling method. In: Lirkov, I., Margenov, S., Waniewski, J. (eds.) Large-Scale Scientific Computing, volume 8353 of Lecture Notes in Computer Science, pp. 33–44. Springer, Berlin (2014)

    Google Scholar 

  34. Olson, D., Li, X., Ortner, C., Van Koten, B.: Force-Based Atomistic/Continuum Blending for multilattices. ArXiv e-prints (2016) 909

  35. Olson, D., Ortner, C.: Regularity and locality of point defects in multilattices. Appl. Math. Res. Express 2017, 297–337 (2017)

    MathSciNet  Google Scholar 

  36. Olson, D., Shapeev, A., Bochev, P., Luskin, M.: Analysis of an optimization-based atomistic-to-continuum coupling method for point defects. ESAIM: M2AN 50(1), 1–41 (2016)

    Article  MathSciNet  Google Scholar 

  37. Ortiz, M., Phillips, R., Tadmor, E.: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73(6), 1529–1563 (1996)

    Article  Google Scholar 

  38. Ortner, C.: A posteriori existence in numerical computations. SIAM J. Numer. Anal. 47(4), 2550–2577 (2009)

    Article  MathSciNet  Google Scholar 

  39. Ortner, C., Shapeev, A.: Interpolants of Lattice Functions for the Analysis of Atomistic/Continuum Multiscale Methods. ArXiv e-prints (2012). 1204.3705

  40. Ortner, C., Süli, E.: A note on linear elliptic systems on \(\mathbb{R}^d\). ArXiv e-prints (2012) 1202.3970

  41. Ortner, C., Theil, F.: Justification of the Cauchy-Born approximation of elastodynamics. Arch. Ration. Mech. Anal. 207, 1025–1073 (2013)

    Article  MathSciNet  Google Scholar 

  42. Ortner, C., Zhang, L.: Atomistic/continuum blending with ghost force correction. ArXiv e-prints, 1407.0053, (2014)

  43. Scott, R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  44. Seleson, P., Beneddine, S., Prudhomme, S.: A force-based coupling scheme for peridynamics and classical elasticity. Comput. Mater. Sci. 66, 34–49 (2013)

    Article  Google Scholar 

  45. Seleson, P., Gunzburger, M.: Bridging methods for atomistic-to-continuum coupling and their implementation. Commun. Comput. Phys. 7, 831–876 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Seleson, P., Ha, Y.D., Beneddine, S.: Concurrent coupling of bond-based peridynamics and the navier equation of classical elasticity by blending. Int. J. Multiscale Comput. Eng. 13, 91–113 (2015)

    Article  Google Scholar 

  47. Shapeev, A.V.: Consistent energy-based atomistic/continuum coupling for two-body potentials in three dimensions. SIAM J. Sci. Comput. 34(3), B335–B360 (2012)

    Article  MathSciNet  Google Scholar 

  48. Shapeev, A.V.: Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions. SIAM J. Multiscale Model. Simul. 9, 905–932 (2011)

    Article  MathSciNet  Google Scholar 

  49. Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R., Ortiz, M.: An adaptive finite element approach to atomic-scale mechanics-the quasicontinuum method. J. Mech. Phys. Solids 47(3), 611–642 (1999)

    Article  MathSciNet  Google Scholar 

  50. Shilkrot, L., Miller, R., Curtin, W.: Coupled atomistic and discrete dislocation plasticity. Phys. Rev. Lett. 89(2), 025501 (2002)

    Article  Google Scholar 

  51. Shimokawa, T., Mortensen, J.J., Schiøtz, J., Jacobsen, K.W.: Matching conditions in the quasicontinuum method: removal of the error introduced at the interface between the coarse-grained and fully atomistic region. Phys. Rev. B 69, 214104 (2004)

    Article  Google Scholar 

  52. Stillinger, F., Weber, T.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262 (1985)

    Article  Google Scholar 

  53. Tadmor, E., Miller, R.: Modeling Materials Continuum, Atomistic and Multiscale Techniques, 1st edn. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  54. Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193(17), 1645–1669 (2004)

    Article  MathSciNet  Google Scholar 

  55. Yang, Jerry Z, Weinan, E.: Generalized Cauchy–Born rules for elastic deformation of sheets, plates, and rods: derivation of continuum models from atomistic models. Phys. Rev. B 74(18), 184110 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Olson.

Additional information

DO was supported by the National Science Foundation PIRE Grant OISE-0967140 and NSF RTG program DMS-1344962. XL was supported by the Simons Collaboration Grant with Award ID: 426935 and NSF DMS-1720245. CO was supported by European Research Council Starting Grant 335120.

A Notation

A Notation

This appendix summarizes notation used in the manuscript.

  • \(\mathcal {L}\)—a Bravais lattice

  • \(\mathcal {M}\)—a multilattice

  • \(\mathcal {S} = \{0, \ldots , S-1\}\)—the index set of atomic species

  • \(\xi \)—an element of \(\mathcal {L}\) or \(\epsilon \mathcal {L}\) for \(\epsilon > 0\).

  • \(\alpha ,\beta ,\gamma ,\delta , \iota , \chi \)—indexes denoting atomic species

  • \(\rho , \tau , \sigma \in \mathcal {L}\)—vectors between lattice sites

  • \(\mathcal {R}\)—an interaction range whose elements are triples of the form \((\rho \alpha \beta )\in \mathcal {L} \times \mathcal {S} \times \mathcal {S}\)

  • \(\mathcal {R}_1 := \{ \rho \in \mathcal {L} : \exists (\rho \alpha \beta )\in \mathcal {R}\}\)—projection of \(\mathcal {R}\) onto lattice direction

  • \(\mathrm{conv}\)—notation for the convex hull of a set

  • \(r_{\mathrm{cut}}:=\max \{ |\rho |: \rho \in \mathcal {R}_1\}\)—a finite cut-off distance for interaction range

  • \(\nu _x := B_{2r_{\mathrm{cut}}}(0)\)—buff region up to twice interaction range

  • \(r_{\mathrm{cell}}\)—the radius of the smallest ball inscribing the unit cell of \(\mathcal {L}\)

  • \(r_{\mathrm{buff}} := \max \{ r_{\mathrm{cut}}, r_{\mathrm{cell}}\}\)

  • \(\varvec{u} = \big (u_\alpha \big )_{\alpha = 0}^{S-1}\)—vector of displacements of all species of atoms

  • \((U, \varvec{p})\)—displacement/shift description defined by \(U = u_0\) and \(p_\alpha = u_\alpha - u_0\)

  • \(\varvec{y}^\mathrm{ref}\) and \(\varvec{p}^\mathrm{ref}\)—the reference deformation and shifts

  • \(D_{(\rho \alpha \beta )} \varvec{u}(\xi ) = u_\beta (\xi + \rho ) - u_\alpha (\xi ), D_{(\rho \alpha \beta )}(U,\varvec{p}) = U(\xi +\rho ) - U(\xi ) + p_\beta (\xi + \rho ) - p_\alpha (\xi )\)

  • \(D\varvec{u}(\xi ) = \big (D_{(\rho \alpha \beta )}\varvec{u}(\xi )\big )_{(\rho \alpha \beta )\in \mathcal {R}}, D(U,\varvec{p})(\xi ) = \big (D_{(\rho \alpha \beta )}(U,\varvec{p})(\xi )\big )_{(\rho \alpha \beta )\in \mathcal {R}}\)

  • \(\hat{V}_\xi (D\varvec{y}(\xi ))\) and \(V_\xi (D\varvec{u})\)—site potentials defined on deformations and displacements, respectively

  • \(\mathcal {E}^\mathrm{a}(\varvec{u})\) and \(\mathcal {E}^\mathrm{a}_{\mathrm{hom}}(\varvec{u})\)—energy difference functionals for defective and defect free lattice.

  • \(\mathcal {T}_{\mathrm{a}}\)—atomistic scale finite element mesh of triangles in 2D and tetrahedra in 3D

  • \(\bar{\zeta }(x), \bar{\zeta }_\xi (x) = \bar{\zeta }(x-\xi )\)—nodal basis function of \(\mathcal {T}_\mathrm{a}\) associated with the origin and \(\xi \) respectively

  • \(\omega _{\rho }(x):= \int _{0}^1 \bar{\zeta }(x+t\rho )dt\)—an auxiliary function

  • \(Iu_\alpha , IU, Ip_\alpha \) or \(\bar{u}_\alpha , \bar{U}, \bar{p}_\alpha \)—a piecewise linear interpolant with respect to \(\mathcal {T}_\mathrm{a}\)

  • \(\tilde{I}u_\alpha , \tilde{I}U, \tilde{I}p_\alpha \) or \(\tilde{u}_\alpha , \tilde{U}, \tilde{p}_\alpha \)—a \(\mathrm{C}^{2,1}\) interpolant with respect to \(\mathcal {T}_\mathrm{a}\)

  • \(u^*(x) := (\bar{\zeta } * \bar{u})(x)\)—quasi-interpolant of u defined through convolution

  • \(|\cdot |\)—meaning depends on context: \(|\cdot |\) is \(\ell ^2\) norm of a vector, matrix, higher order tensor, or finite difference stencil. |T| is area or volume of element T in a finite element partition, \(|\gamma |\) is the order of a multiindex.

  • \(\Vert \cdot \Vert _{\ell ^2(A)}\)\(\ell ^2\) norm over a set A. If \(f:A \rightarrow \mathbb {R}^d\) is a vector-valued function, \(\Vert f\Vert _{\ell ^2(A)} = (\sum _{\alpha \in A}|f(\alpha )|^2)^{1/2}\).

  • \(\Vert \cdot \Vert _{\mathrm{a}}\)—norm on admissible displacements defined by \(\Vert \varvec{u}\Vert _\mathrm{a}^2 := \sum _{\alpha = 0}^{S-1}\Vert \nabla Iu_\alpha \Vert _{L^2(\mathbb {R}^d)}^2 + \sum _{\alpha \ne \beta }\Vert Iu_\alpha - Iu_\beta \Vert _{L^2(\mathbb {R}^d)}^2\).

  • \(\varvec{\mathcal {U}}\) —space of admissible displacements defined by

    $$\begin{aligned} \mathcal {U} :=~ \left\{ \varvec{u} = (u_\alpha )_{\alpha = 0}^{S-1} : u_\alpha :\mathcal {L} \rightarrow \mathbb {R}^n, \Vert \varvec{u}\Vert _\mathrm{a}< \infty \right\} /\mathbb {R}^n \end{aligned}$$
  • \(\varvec{\mathcal {U}}_0\) —space of test displacements defined by

    $$\begin{aligned} \left\{ (U, \varvec{p}) : \mathrm{supp}(\nabla IU), \, p_0 \equiv 0, \, \text{ and } \, \mathrm{supp}(Ip_\alpha ) \, \text{ are } \text{ compact }\right\} /\mathbb {R}^n \end{aligned}$$
  • \(\varOmega \)—a finite polygonal domain

  • \(\varphi \) —the blending function

  • \(\varOmega _\mathrm{a}:=~ \mathrm{supp}(1-\varphi ) + B_{2r_{\mathrm{buff}}}\)—the atomistic domain

  • \(\varOmega _{\mathrm{b}} :=~ \mathrm{supp}(\nabla \varphi ) + B_{2r_{\mathrm{buff}}}\)—the blending region

  • \(\varOmega _\mathrm{c}:=~ {\mathrm{supp}}(\varphi ) \cap \varOmega + B_{2r_{\mathrm{buff}}}\)—the continuum region

  • \(\varOmega _{\mathrm{core}} :=~ \varOmega \setminus \varOmega _\mathrm{c}\)—the defect core region

  • \(\mathcal {T}_h\)—the (coarse) finite element mesh on \(\varOmega \)

  • \(h(x) := \max _{T: x\in T} \mathrm{Diam}(T)\)—the mesh size function

  • \(R_{\mathrm{t}} := \inf _{R} \{R > 0: \varOmega _{\mathrm{t}} \subset B_{R}(0)\}\)—an exterior measure of a domain \(\varOmega _{\mathrm{t}}\)

  • \(r_{\mathrm{t}} := \sup _{r}\{r > 0: B_{r}(0) \subset \varOmega _{\mathrm{t}}\}\)—an interior measure of a domain \(\varOmega _{\mathrm{t}}\)

  • \(R_{\mathrm{o}} := \inf _{R} \{R > 0: \varOmega \subset B_{R}(0)\}\) —an exterior measurement of \(\varOmega \)

  • \(r_{\mathrm{i}} := \sup _{r}\{r > 0: B_{r}(0) \subset \varOmega \}\)—an interior measurement of \(\varOmega \)

  • \(\varOmega _{\mathrm{ext}} := \mathbb {R}^d\setminus B_{r_{\mathrm{i}}/2}(0)\)—exterior of \(\varOmega \)

  • \(I_h\)— the standard piecewise linear nodal interpolant on \(\mathcal {T}_h\)

  • \(S_{h}\)—the Scott-Zhang quasi-interpolant on \(\mathcal {T}_h\).

  • \(W_{\mathrm{CB}}(U,\varvec{p})\)—Cauchy–Born strain energy density function

  • \(\mathcal {E}^\mathrm{c}(U,\varvec{p})\)—Cauchy–Born energy functional

  • \(\mathcal {U}_h :=~ \left\{ u \in \mathrm{C}^0(\varOmega ) : u|_{T} \in \mathcal {P}_1(T), \quad \forall \, T \in \mathcal {T}_h\right\} \)—a finite element space

  • \(\varvec{\mathcal {U}}_h :=~ \mathcal {U}_h / \mathbb {R}^n\) space of admissible finite element displacements

  • \(\mathcal {U}_{h,0} :=~ \left\{ u \in \mathrm{C}^0(\mathbb {R}^d): u|_{T} \in \mathcal {P}_1(T), \quad \forall \, T \in \mathcal {T}_h, u = 0 \text{ on } \mathbb {R}^d\setminus \varOmega \right\} \)—finite element space satisfying homogeneous boundary conditions

  • \(\varvec{\mathcal {U}}_{h,0} :=~ \mathcal {U}_{h,0}/ \mathbb {R}^n\)—finite element quotient space

  • \(\varvec{\mathcal {P}}_{h,0} :=~ \{0\} \times (\mathcal {U}_{h,0})^{S-1}\)—finite element space for shifts

  • \(\Vert (U, \varvec{p})\Vert _{\mathrm{ml}}^2 := \Vert \nabla U \Vert _{L^2(\mathbb {R}^d)}^2 + \sum _{\alpha = 0}^{S-1}\Vert p_\alpha \Vert ^2_{L^2(\mathbb {R}^d)} = \Vert \nabla U \Vert _{L^2(\mathbb {R}^d)}^2 + \Vert \varvec{p}\Vert ^2_{L^2(\mathbb {R}^d)}\)—norm on finite element spaces

  • \(\Vert \varvec{p}\Vert _{L^p} := \sum _{\alpha = 0}^{S-1}\Vert p_\alpha \Vert _{L^p}, \Vert \nabla \varvec{p}\Vert _{L^p} := \sum _{\alpha = 0}^{S-1}\Vert \nabla p_\alpha \Vert _{L^p}\)

  • \(\eta (x)\)—a smooth bump function or standard mollifying function depending on the context

  • \(T_{R}u_\alpha (x) = \eta (x/R)\bigg (Iu_\alpha - \frac{1}{|A_R|}\int \limits _{A_R} Iu_0\, dx\bigg )\)—a truncation operator

  • \(\varPi _{h} u_\alpha := S_h (T_{r_{\mathrm{i}}}u_\alpha )\)—an projection operator from discrete displacements to finite element displacements

  • \(\varPi _{h} p_\alpha := \varPi _{h} (u_\alpha - u_0)\) —- a projection operator on shifts

  • \([\mathrm{{S}^\mathrm{c}_{\mathrm{d}}}(U,\varvec{q})(x)]_{\beta }\) and \([\mathrm{{S}^\mathrm{c}_{\mathrm{s}}}(U,\varvec{q})(x)]_{\alpha \beta }\)— continuum stress function associated with displacements and shifts

  • \([\,\mathrm{S}^\mathrm{a}_{\mathrm{d}}(U,\varvec{q})(x)]_\beta \) and \([\,\mathrm{S}^\mathrm{a}_{\mathrm{s}}(U,\varvec{q})(x)]_{\alpha \beta }\) —atomistic stress function associated with displacements and shifts

  • \(V_{,(\rho \alpha \beta )(\tau \gamma \delta )}\big ( \cdot \big ):v:w :=~ w^{{\top }}\big [V_{,(\rho \alpha \beta )(\tau \gamma \delta )}\big ( \cdot \big )\big ]v \quad \forall v,w \in \mathbb {R}^n\)

  • \(\mathbb {C} : D(W,\varvec{q}): D(Z,\varvec{r}) :=~ \sum _{\begin{array}{c} (\rho \alpha \beta )\\ (\tau \gamma \delta ) \end{array}} V_{,(\rho \alpha \beta )(\tau \gamma \delta )}:D_{(\rho \alpha \beta )}(W,\varvec{q}):D_{(\tau \gamma \delta )}(Z,\varvec{r})\)

  • \(\mathbb {C} : \nabla (W,\varvec{q}): \nabla (Z,\varvec{r}) :=~ \sum _{\begin{array}{c} (\rho \alpha \beta )\\ (\tau \gamma \delta ) \end{array}} V_{,(\rho \alpha \beta )(\tau \gamma \delta )}:(\nabla _\rho W + q_\beta - q_\alpha ):(\nabla _\tau Z + r_\beta - r_\alpha )\)

  • \(\varphi _n\)—a sequence of blending functions

  • \(\psi _n := 1-\varphi _n\)

  • \(\theta _n := \sqrt{\psi _n}\)

  • \(B_{r}, B_{r}(x)\)—Ball of radius r about the origin or ball of radius r about x.

  • \(\mathrm{supp}(f)\)—support of a function f.

  • \(\mathrm{Diam}(U)\)—diameter of the set U measured with the Euclidean norm.

  • \((\mathbb {R}^n)^{\mathcal {R}}\)—direct product of vectors with \(|\mathcal {R}|\) terms.

  • —transpose of a matrix.

  • \(\otimes \)—tensor product.

  • \(\nabla ^j\)jth derivative of a function defined on \(\mathbb {R}^d\).

  • \(\partial _\gamma \)—multiindex notation for derivatives.

  • \(L^p(U)\)—Standard Lebesgue spaces.

  • \(W^{k,p}(U)\)—Standard Sobolev spaces.

  • \(W^{k,p}_{\mathrm{loc}}(U) = \left\{ f:U \rightarrow \mathbb {R}^d : f \in W^{k,p}(V) \, \forall V \subset \subset U \right\} \).

  • \(H^k(U) = W^{k,2}(U)\), \(H^1_0(U) = \left\{ f \in H^k(U) : \text{ Trace }(f) = 0~\, \text{ on } \,~ \partial U \right\} \).

  • \(\mathrm{C}^{k}\)—space of k times continuously differentiable functions.

  • \(C^{k,1}\)—space of functions having continuous derivatives up to order k, and whose k-th partial derivatives are Lipschitz continuous.

  • —average value of f over U.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, D., Li, X., Ortner, C. et al. Force-based atomistic/continuum blending for multilattices. Numer. Math. 140, 703–754 (2018). https://doi.org/10.1007/s00211-018-0979-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0979-x

Mathematics Subject Classification

Navigation