Numerische Mathematik

, Volume 140, Issue 3, pp 677–701 | Cite as

Local error analysis for the Stokes equations with a punctual source term

  • Silvia Bertoluzza
  • Astrid Decoene
  • Loïc LacoutureEmail author
  • Sébastien Martin


The solution of the Stokes problem with a punctual force in source term is not \(H^1 \times \mathbb {L}^2\) and therefore the approximation by a finite element method is suboptimal. In the case of Poisson problem with a Dirac mass in the right-hand side, an optimal convergence for the Lagrange finite elements has been shown on a subdomain which excludes the singularity in \(\mathbb {L}^2\)-norm by Köppl and Wohlmuth. Here we show a quasi-optimal local convergence in \(H^1 \times \mathbb {L}^2\)-norm for a \(\mathbb {P}_{k}/\mathbb {P}_{k-1}\)-finite element method, \(k \geqslant 2\), and for the \(\mathbb {P}_{1}{\mathrm{b}}/\mathbb {P}_{1}\). The error is still analysed on a subdomain which does not contain the singularity. The proof is based on local Arnold and Liu error estimates, a weak version of Aubin–Nitsche duality lemma applied to the Stokes problem and discrete inf-sup conditions. These theoretical results are generalized to a wide class of finite element methods, before being illustrated by numerical simulations.

Mathematics Subject Classification

65M60 65M15 76D07 


  1. 1.
    Araya, R., Behrens, E., Rodríguez, R.: A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105(2), 193–216 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Liu, X.B.: Local error estimates for finite element discretizations of the Stokes equations. RAIRO Modél. Math. Anal. Numér. 29(3), 367–389 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bertoluzza, S.: The discrete commutator property of approximation spaces. C. R. Acad. Sci. Paris Sér. I Math. 329(12), 1097–1102 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). Théorie et applications. [Theory and applications]Google Scholar
  6. 6.
    Casas, E.: \(L^2\) estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47(4), 627–632 (1985)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Casas, E., Clason, C., Kunisch, K.: Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51(1), 28–63 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Casas, E., Zuazua, E.: Spike controls for elliptic and parabolic PDEs. Syst. Control Lett. 62(4), 311–318 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ciarlet, P.G.: The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]Google Scholar
  11. 11.
    Fulford, G.R., Blake, J.R.: Muco-ciliary transport in the lung. J. Theor. Biol. 121(4), 381–402 (1986)CrossRefGoogle Scholar
  12. 12.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). Theory and algorithmsCrossRefGoogle Scholar
  13. 13.
    Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)zbMATHGoogle Scholar
  14. 14.
    Köppl, T., Wohlmuth, B.: Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52(4), 1753–1769 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lacouture, L.: A numerical method to solve the Stokes problem with a punctual force in source term. C. R. Mecanique 343(3), 187–191 (2015)CrossRefGoogle Scholar
  16. 16.
    Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55(3), 769–802 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comp. 28, 937–958 (1974)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  19. 19.
    Rannacher, R., Vexler, B.: A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44(5), 1844–1863 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Scott, L.R.: Finite element convergence for singular data. Numer. Math. 21, 317–327, (1973/74)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence, RI, (2001). Theory and numerical analysis, Reprint of the 1984 editionGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Bertoluzza
    • 1
  • Astrid Decoene
    • 2
  • Loïc Lacouture
    • 3
    Email author
  • Sébastien Martin
    • 4
  1. 1.CNR IMATI Enrico MagenesPaviaItaly
  2. 2.Université Paris Sud, Laboratoire de mathématiques d’Orsay (CNRS-UMR 8628)Orsay cedexFrance
  3. 3.Institut national des Sciences appliquées de Toulouse, GMMToulouse Cedex 4France
  4. 4.Université Paris Descartes, Laboratoire MAP5 (CNRS UMR 8145)Paris cedex 06France

Personalised recommendations