Skip to main content
Log in

\(L^{2}\)-discretization error bounds for maps into Riemannian manifolds

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the approximation of functions that map a Euclidean domain \(\Omega \subset {\mathbb {R}}^{d}\) into an n-dimensional Riemannian manifold (Mg) minimizing an elliptic, semilinear energy in a function set \(H\subset W^{1,2}(\Omega ,M)\). The approximation is given by a restriction of the energy minimization problem to a family of conforming finite-dimensional approximations \(S_{h}\subset H\). We provide a set of conditions on \(S_{h}\) such that we can prove a priori \(W^{1,2}\)- and \(L^{2}\)-approximation error estimates comparable to standard Euclidean finite elements. This is done in an intrinsic framework, independently of embeddings of the manifold or the choice of coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Bartels, S.: Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43(1), 220–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartels, S., Prohl, A.: Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comput. 76(260), 1847–1859 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casciaro, B., Francaviglia, M.: A new variational characterization of Jacobi fields along geodesics. Annali di Matematica pura ed applicata 172(4), 219–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P .G.: The Finite Element Method for Elliptic Problems. Elsevier, Amsterdam (1978)

    MATH  Google Scholar 

  7. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dobrowolski, M., Rannacher, R.: Finite element methods for nonlinear elliptic systems of second order. Math. Nachr. 94, 155–172 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dziuk, G., Elliott, C.: \({L}^2\)-estimates for the evolving surface finite element method. Math. Comput. 82(281), 1–24 (2013)

    Article  MATH  Google Scholar 

  10. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dziuk, G., Elliott, C.M.: A fully discrete evolving surface finite element method. SIAM J. Numer. Anal. 50(5), 2677–2694 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eichmair, M., Metzger, J.: Large isopserimetric surfaces in initial data sets. J. Differ. Geom. 94(1), 159–186 (2013)

    Article  MATH  Google Scholar 

  13. Evans, L .C.: Partial Differential Equations. AMS, Providence (1998)

    MATH  Google Scholar 

  14. Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements. Found. Comput. Math. 15(6), 1357–1411 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hajłasz, P.: Sobolev mappings between manifolds and metric spaces. In: Maz’ya, V. (ed.) Sobolev Spaces in Mathematics I, Volume 8 of International Mathematical Series, pp. 185–222. Springer, Berlin (2009)

  16. Hardering, H.: Intrinsic Discretization Error Bounds for Geodesic Finite Elements. PhD thesis, Freie Universität Berlin (2015)

  17. Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, second edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  18. Hélein, F., Wood, J.C.: Harmonic maps. In: Krupka, D., Saunders, D. (eds.) Handbook of Global Analysis, pp. 417–491. Elsevier, Amsterdam (2008)

  19. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2008)

    MATH  Google Scholar 

  20. Karcher, H.: Mollifier smoothing and Riemannian center of mass. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MATH  Google Scholar 

  21. Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles—a classification. Bull. Tokyo Gakugei Univ. 40, 1–29 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Melcher, C.: Chiral skyrmions in the plane. Proc. R. Soc. Lond. A: Mater. 470(2172), 20140394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Münch, I: Ein geometrisch und materiell nichtlineares Cosserat-Model—Theorie, Numerik und Anwendungsmöglichkeiten. PhD thesis, Universität Karlsruhe (2007)

  24. Münch, I., Neff, P., Wagner, W.: Transversely isotropic material: nonlinear Cosserat versus classical approach. Contin. Mech. Therm. 23(1), 27–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Münch, I., Wagner, W., Neff, P.: Theory and FE-analysis for structures with large deformation under magnetic loading. Comput. Mech. 44(1), 93–102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  27. Neff, P.: A geometrically exact planar cosserat shell-model with microstructure: existence of minimizers for zero cosserat couple modulus. Math. Models Methods Appl. Sci. 17(03), 363–392 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Palais, R .S.: Foundations of Global Non-linear Analysis. Benjamin, New York (1968)

    MATH  Google Scholar 

  29. Rivière, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175(2), 197–226 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645–1670 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Sander, O.: Geodesic finite elements on simplicial grids. Int. J. Numer. Methods Eng. 92(12), 999–1025 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sander, O.: Geodesic finite elements of higher order. IMA J. Numer. Anal. 36(1), 238–266 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Sander, O.: Test Function Spaces for Geometric Finite Elements. arXiv:1607.07479 (2016)

  34. Sander, O., Neff, P., Bîrsan, M.: Numerical treatment of a geometrically nonlinear planar Cosserat shell model. Comput. Mech. 57(5), 817–841 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmeißer, H.-J., Sickel, W.: Vector-valued Sobolev spaces and Gagliardo–Nirenberg inequalities. In: Brezis, H., Chipot, M., Escher, J. (eds.) Nonlinear Elliptic and Parabolic Problems, pp. 463–472. Birkhäuser, Boston (2005)

  36. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18, 253–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simo, J.C., Fox, D.D., Rifai, M.S.: On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput. Methods Appl. Mech. Eng. 79(1), 21–70 (1990)

    Article  MATH  Google Scholar 

  38. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)

    Article  MATH  Google Scholar 

  39. Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(1), 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vese, L.A., Osher, S.J.: Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40(6), 2085–2104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wriggers, P., Gruttmann, F.: Thin shells with finite rotations formulated in Biot stresses: theory and finite element formulation. Int. J. Num. Methods Eng. 36, 2049–2071 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Hardering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardering, H. \(L^{2}\)-discretization error bounds for maps into Riemannian manifolds. Numer. Math. 139, 381–410 (2018). https://doi.org/10.1007/s00211-017-0941-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0941-3

Mathematics Subject Classification

Navigation