Advertisement

Numerische Mathematik

, Volume 139, Issue 2, pp 447–478 | Cite as

Interior energy error estimates for the weak Galerkin finite element method

  • Hengguang LiEmail author
  • Lin Mu
  • Xiu Ye
Article
  • 327 Downloads

Abstract

Consider the Poisson equation in a polytopal domain \(\Omega \subset {\mathbb {R}}^d\) (\(d=2, 3\)) as the model problem. We study interior energy error estimates for the weak Galerkin finite element approximation to elliptic boundary value problems. In particular, we show that the interior error in the energy norm is bounded by three components: the best local approximation error, the error in negative norms, and the trace error on the element boundaries. This implies that the interior convergence rate can be polluted by solution singularities on the domain boundary, even when the solution is smooth in the interior region. Numerical results are reported to support the theoretical findings. To the best of our knowledge, this is the first local energy error analysis that applies to general meshes consisting of polytopal elements and hanging nodes.

Keywords

Weak Galerkin Finite element methods Interior estimates Second-order elliptic problems 

Mathematics Subject Classification

Primary 65N15 65N30 Secondary 35J50 

References

  1. 1.
    Adams, R.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press, New York, London (1975)Google Scholar
  2. 2.
    Apel, T., Nicaise, S.: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21(6), 519–549 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Băcuţă, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps. Numer. Math. 100(2), 165–184 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brenner, S .C., Scott, L .R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, second edition edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Costabel, M., Dauge, M.: Weighted regularization of maxwell equations in polyehdral domains. a rehabilitation of nodal finite elements. Numer. Math. 93, 239–277 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Costabel, M., Dauge, M., Nicaise, S.: Corner singularities of Maxwell interface and eddy current problems. In: Gohberg, I., Wendland, W., Ferreira dos Santos, A., Speck, FO., Teixeira, F.S. (eds.) Operator Theoretical Methods and Applications to Mathematical Physics. Operator Theory: Advances and Applications, vol. 147, pp. 241–256. Birkhäuser, Basel (2004)Google Scholar
  7. 7.
    Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of \(hp\)-FEM for Maxwell equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15(4), 575–622 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)zbMATHGoogle Scholar
  9. 9.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)Google Scholar
  10. 10.
    Grisvard, P.: Singularities in Boundary Value Problems. Research Notes in Applied Mathematics, vol. 22. Springer, New York (1992)zbMATHGoogle Scholar
  11. 11.
    Guo, B., Babuška, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in \(\mathbf{R}^3\). I. Countably normed spaces on polyhedral domains. Proc. R. Soc. Edinb. Sect. A 127(1), 77–126 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jin, G., Li, H., Zhang, Q., Zou, Q.: Linear and quadratic finite volume methods on triangular meshes for elliptic equations with singular solutions. Int. J. Numer. Anal. Model. 13(2), 244–264 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kondrat’ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Transl. Mosc. Math. Soc. 16, 227–313 (1967)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Li, H.: The \(W^1_p\) stability of the Ritz projection on graded meshes. Math. Comput. 86(303), 49–74 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, H.: An anisotropic finite element method on polyhedral domains: interpolation error analysis. Math. Comput.  https://doi.org/10.1090/mcom/3290
  16. 16.
    Li, H., Mazzucato, A., Nistor, V.: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37, 41–69 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mu, L., Wang, J., Wang, Y., Ye, X.: A weak Galerkin mixed finite element method for biharmonic equations. Numer. Solut. Partial Differ. Equ. Theory Algorithms Appl. 45, 247–277 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12, 31–53 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mu, L., Wang, J., Ye, X.: A Weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285, 45–58 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nicaise, S., Li, H., Mazzucato, A.: Regularity and a priori error analysis of a Ventcel problem in polyhedral domains. Math. Methods Appl. Sci. 40(5), 1625–1636 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nitsche, J., Schatz, A.: Interior estimates for Ritz-Galerkin methods. Math. Comput. 28, 937–958 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane polygonal domains. I. Math. Comput. 32(141), 73–109 (1978)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane polygonal domains II. Refinements Math. Comput. 33(146), 465–492 (1979)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Schötzau, D., Schwab, C., Wihler, T.: \(hp\)-dGFEM for second-order mixed elliptic problems in polyhedra. Math. Comput. 85, 1051–1083 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wahlbin, L.: On the sharpness of certain local estimates for \( H^{1}\) projections into finite element spaces: influence of a re-entrant corner. Math. Comput. 42(165), 1–8 (1984)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wahlbin, L.B.: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics, vol. 1605. Springer, Berlin (1995)zbMATHGoogle Scholar
  28. 28.
    Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83, 2101–2126 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsWayne State UniversityDetroitUSA
  2. 2.Computer Science and Mathematics DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department of MathematicsUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations