Numerische Mathematik

, Volume 139, Issue 1, pp 27–45 | Cite as

A note on a priori \(\mathbf {L^p}\)-error estimates for the obstacle problem

  • Constantin Christof
  • Christian Meyer


This paper is concerned with a priori error estimates for the piecewise linear finite element approximation of the classical obstacle problem. We demonstrate by means of two one-dimensional counterexamples that the \(L^2\)-error between the exact solution u and the finite element approximation \(u_h\) is typically not of order two even if the exact solution is in \(H^2(\varOmega )\) and an estimate of the form \(\Vert u - u_h\Vert _{H^1} \le {Ch}\) holds true. This shows that the classical Aubin–Nitsche trick which yields a doubling of the order of convergence when passing over from the \(H^1\)- to the \(L^2\)-norm cannot be generalized to the obstacle problem.

Mathematics Subject Classification

65K15 65N15 65N30 



We would like to thank the two anonymous reviewers for their helpful suggestions and comments.


  1. 1.
    Baiocchi, C.: Estimation d’erreur dans \(L^\infty \) pour les inéquations à obstacle. In: Mathematical Aspects of Finite Element Methods: Proceedings of the Conference held in Rome, 10–12 December 1975, pp. 27–34. Springer, Berlin (1977)Google Scholar
  2. 2.
    Christof, C.: \(L^\infty \)-error estimates for the obstacle problem revisited. Calcolo (2017).
  3. 3.
    Ciarlet, P.G.: Lectures on the Finite Element Method. Tata Institute of Fundamental Research, Bombay (1975)zbMATHGoogle Scholar
  4. 4.
    Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Glowinski, R.: Lectures on Numerical Methods for Non-Linear Variational Problems. Tata Institute of Fundamental Research, Bombay (1980)zbMATHGoogle Scholar
  6. 6.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Meyer, C., Thoma, O.: A priori finite element error analysis for optimal control of the obstacle problem. SIAM J. Numer. Anal. 51, 605–628 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mosco, U., Strang, G.: One-sided approximation and variational inequalities. Bull. Am. Math. Soc. 80, 308–312 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mosco, U.: Error estimates for some variational inequalities, mathematical aspects of finite element methods. Lect. Notes Math. 606, 224–236 (1977)CrossRefGoogle Scholar
  10. 10.
    Natterer, F.: Optimale \(L_2\)-Konvergenz finiter Elemente bei Variationsungleichungen. Bonner Mathematische Schriften 89, 1–13 (1976)zbMATHGoogle Scholar
  11. 11.
    Nitsche, J.: \(L^\infty \)-convergence of finite element approximations. Lect. Notes Math. 606, 261–274 (1977)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Noor, M.A.: Finite element estimates for a class of nonlinear variational inequalities. Int. J. Math. Math. Sci. 16(3), 503–510 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Steinbach, O.: Boundary element methods for variational inequalities. Numer. Math. 126(1), 173–197 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Strang, G.: One-sided approximation and plate bending, computing methods in applied sciences and engineering part 1. Lect. Notes Comput. Sci. 10, 140–155 (1974)CrossRefGoogle Scholar
  15. 15.
    Suttmeier, F.-T.: Numerical Solution of Variational Inequalities by Adaptive Finite Elements. Vieweg-Teubner, Wiesbaden (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of MathematicsTU DortmundDortmundGermany

Personalised recommendations