Numerische Mathematik

, Volume 138, Issue 4, pp 905–937 | Cite as

Discrete maximal regularity and the finite element method for parabolic equations

Article
  • 189 Downloads

Abstract

Maximal regularity is a fundamental concept in the theory of partial differential equations. In this paper, we establish a fully discrete version of maximal regularity for parabolic equations on a polygonal or polyhedral domain \(\varOmega \). We derive various stability results in the discrete \(L^p(0,T;L^q(\varOmega ))\) norms for the finite element approximation with the mass-lumping to the linear heat equation. Our method of analysis is an operator theoretical one using pure imaginary powers of operators and might be a discrete version of the result of Dore and Venni. As an application, optimal order error estimates in those norms are proved. Furthermore, we study the finite element approximation for semilinear heat equations with locally Lipschitz continuous nonlinear terms and offer a new method for deriving optimal order error estimates. Some interesting auxiliary results including discrete Gagliardo–Nirenberg and Sobolev inequalities are also presented.

Mathematics Subject Classification

35K91 65M60 

Notes

Acknowledgements

The first author was supported by the Program for Leading Graduate Schools, MEXT, Japan and JSPS KAKENHI Grant No. 15J07471, Japan. The second author was supported by JST CREST Grant No. JPMJCR15D1, Japan and by JSPS KAKENHI Grant Nos. 15H03635 and 15K13454, Japan. The authors would like to thank the anonymous reviewer for valuable comments and suggestions to improve the quality of the paper.

References

  1. 1.
    Adams, R.A., Fournier, J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003)MATHGoogle Scholar
  2. 2.
    Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory. Birkhäuser Boston, Inc., Boston (1995)CrossRefMATHGoogle Scholar
  3. 3.
    Amann, H.: Quasilinear parabolic problems via maximal regularity. Adv. Differ. Equ. 10(10), 1081–1110 (2005)MathSciNetMATHGoogle Scholar
  4. 4.
    Ashyralyev, A., Piskarev, S., Weis, L.: On well-posedness of difference schemes for abstract parabolic equations in \(L^p([0, T];E)\) spaces. Numer. Funct. Anal. Optim. 23(7–8), 669–693 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ashyralyev, A., Sobolevskiĭ, P.E.: Well-Posedness of Parabolic Difference Equations. Birkhäuser, Basel (1994)CrossRefMATHGoogle Scholar
  6. 6.
    Bank, R.E., Yserentant, H.: On the \(H^1\)-stability of the \(L_2\)-projection onto finite element spaces. Numer. Math. 126(2), 361–381 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Berger, M., Kohn, R.V.: A rescaling algorithm for the numerical calculation of blowing-up solutions. Commun. Pure Appl. Math. 41(6), 841–863 (1988)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Blunck, S.: Maximal regularity of discrete and continuous time evolution equations. Stud. Math. 146(2), 157–176 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the \(L^2\) projection in \(H^1(\Omega )\). Math. Comp. 71(237), 147–156 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, third edn. Springer, New York (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)MATHGoogle Scholar
  12. 12.
    Coifman, R.R., Weiss, G.: Transference Methods in Analysis. American Mathematical Society, Providence (1976)MATHGoogle Scholar
  13. 13.
    Crouzeix, M., Thomée, V.: Resolvent estimates in \(l_p\) for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes. Comput. Methods Appl. Math. 1(1), 3–17 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \(W^{1}_{\infty }\) norm for finite element methods on graded meshes. Math. Comp. 81(278), 743–764 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Denk, R., Hieber, M., Prüss, J.: \(\cal{R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003)MathSciNetMATHGoogle Scholar
  16. 16.
    Dore, G.: \(L^p\) regularity for abstract differential equations. In: Hikosaburo Komatsu (ed.) Functional Analysis and Related Topics, 1991 (Kyoto), Volume 1540 of Lecture Notes in Mathematics, pp. 25–38. Springer, Berlin (1993)Google Scholar
  17. 17.
    Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196(2), 189–201 (1987)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Duong, X.T.: \(H_\infty \) functional calculus of second order elliptic partial differential operators on \(L^p\) spaces. In: Proceedings of the Centre for Mathematics and its Applications Australian National University on Miniconference on Operators in Analysis (Sydney, 1989), vol. 24, pp. 91–102. Australian National University, Canberra (1990)Google Scholar
  19. 19.
    Eriksson, K., Johnson, C., Larsson, S.: Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35(4), 1315–1325 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Fujii, H.: Some remarks on finite element analysis of time-dependent field problems. In: Proceedings of the 1973 Tokyo Seminar on Finite Element Analysis, Theory and Practice in Finite Element Structural Analysis, pp. 91–106. University of Tokyo Press, Tokyo (1973)Google Scholar
  22. 22.
    Fujita, H., Saito, N., Suzuki, T.: Operator Theory and Numerical Methods. North-Holland Publishing Co., Amsterdam (2001)MATHGoogle Scholar
  23. 23.
    Gavrilyuk, I.P., Makarov, V.L.: Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces. SIAM J. Numer. Anal. 43(5), 2144–2171 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Geissert, M.: Discrete maximal \(L_p\) regularity for finite element operators. SIAM J. Numer. Anal. 44(2), 677–698 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Geissert, M.: Applications of discrete maximal \(L_p\) regularity for finite element operators. Numer. Math. 108(1), 121–149 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman (Advanced Publishing Program), Boston (1985)MATHGoogle Scholar
  27. 27.
    Hansbo, A.: Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT 42(2), 351–379 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kemmochi, T.: Discrete maximal regularity for abstract Cauchy problems. Stud. Math. 234(3), 241–263 (2016)MathSciNetMATHGoogle Scholar
  29. 29.
    Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York (2003)MATHGoogle Scholar
  30. 30.
    Kovács, B., Li, B., Lubich, C.: A-stable time discretizations preserve maximal parabolic regularity. SIAM J. Numer. Anal. 54(6), 3600–3624 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kunstmann, P.C., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus. In: Functional Analytic Methods for Evolution Equations, Volume 1855 of Lecture Notes in Mathematics, pp. 65–311. Springer, Berlin (2004)Google Scholar
  32. 32.
    Leykekhman, D., Vexler, B.: Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135(3), 923–952 (2017)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Li, B.: Maximum-norm stability and maximal \(L^p\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math. 131(3), 489–516 (2015)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Li, B., Sun, W.: Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comp. 86(305), 1071–1102 (2017)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Li, B., Sun, W.: Maximal regularity of fully discrete finite element solutions of parabolic equations. SIAM J. Numer. Anal. 55(2), 521–542 (2017)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Lunardi, A.: Interpolation Theory, second edn. Edizioni della Normale, Pisa (2009)MATHGoogle Scholar
  37. 37.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefMATHGoogle Scholar
  38. 38.
    Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Saito, N.: Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun. Pure Appl. Anal. 11(1), 339–364 (2012)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Schatz, A.H., Thomée, V., Wahlbin, L.B.: Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations. Commun. Pure Appl. Math. 51(11–12), 1349–1385 (1998)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, second edn. Springer, Berlin (2006)MATHGoogle Scholar
  42. 42.
    Thomée, V., Wahlbin, L.B.: Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions. Numer. Math. 87(2), 373–389 (2000)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Thomée, V., Wahlbin, L.B.: On the existence of maximum principles in parabolic finite element equations. Math. Comp. 77(261), 11–19 (2008)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. 135(1), 265–311 (2017)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations