Skip to main content
Log in

Well-balanced schemes for the shallow water equations with Coriolis forces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In the present paper we study shallow water equations with bottom topography and Coriolis forces. The latter yield non-local potential operators that need to be taken into account in order to derive a well-balanced numerical scheme. In order to construct a higher order approximation a crucial step is a well-balanced reconstruction which has to be combined with a well-balanced update in time. We implement our newly developed second-order reconstruction in the context of well-balanced central-upwind and finite-volume evolution Galerkin schemes. Theoretical proofs and numerical experiments clearly demonstrate that the resulting finite-volume methods preserve exactly the so-called jets in the rotational frame. For general two-dimensional geostrophic equilibria the well-balanced methods, while not preserving the equilibria exactly, yield better resolution than their non-well-balanced counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audusse, E., Klein, R., Nguyen, D.D., Vater, S.: Preservation of the discrete geostrophic equilibrium in shallow water flows. In: Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4 of Springer Proceedings in Mathematics, Springer Berlin Heidelberg, pp. 59–67 (2011)

  3. Audusse, E., Klein, R., Owinoh, A.: Conservative discretization of Coriolis force in a finite volume framework. J. Comput. Phys. 228, 2934–2950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollermann, A., Chen, G., Kurganov, A., Noelle, S.: A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56, 267–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Botta, N., Klein, R., Langenberg, S., Lützenkirchen, S.: Well balanced finite volume methods for nearly hydrostatic flows. J. Comput. Phys. 196, 539–565 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchut, F., Le Sommer, J., Zeitlin, V.: Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. II. High-resolution numerical simulations. J. Fluid Mech. 514, 35–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 45, 423–446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castro, M.J., López, J.A., Parés, C.: Finite volume simulation of the geostrophic adjustment in a rotating shallow-water system. SIAM J. Sci. Comput. 31, 444–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Meth. Fluids 78, 355–383 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chertock, A., Kurganov, A., Qu, Z., Wu, T.: Three-layer approximation of two-layer shallow water equations. Math. Model. Anal. 18, 675–693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dellar, P.J., Salmon, R.: Shallow water equations with a complete coriolis force and topography. Phys. Fluids 17, 106601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dudzinski, M.: Well-balanced bicharacteristic-based finite volume schemes for multilayer shallow water systems, Ph.D. thesis, Technische Universität Hamburg-Harburg (2014)

  13. Dudzinski, M., Lukáčová-Medviďová, M.: Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts. J. Comput. Phys. 235, 82–113 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gallouët, T., Hérard, J.-M., Seguin, N.: Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32, 479–513 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. Applied Mathematical Sciences. Springer-Verlag, New York (1996)

    Book  MATH  Google Scholar 

  16. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co Pte. Ltd., Hackensack, NJ (2011)

    Book  MATH  Google Scholar 

  17. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hundertmark, A., Lukáčová-Medviďová, M., Prill, F.: Large time step finite volume evolution Galerkin methods. J. Sci. Comp. 48, 227–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, S.: A steady-state capturing method for hyperbolic systems with geometrical source terms. M2AN Math. Model. Numer. Anal. 35, 631–645 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klein, R.: Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech. 42, 249–274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kröner, D.: Numerical schemes for conservation laws. In: Wiley–Teubner Series Advances in Numerical Mathematics. John Wiley & Sons Ltd., Chichester (1997)

  22. Kuo, A.C., Polvani, L.M.: Wave-vortex interaction in rotating shallow water. I. One space dimension. J. Fluid Mech. 394, 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuo, A.C., Polvani, L.M.: Nonlinear geostrophic adjustment, cyclone/anticyclone asymmetry, and potential vorticity rearrangement. Phys. Fluids 12, 1087–1100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kurganov, A., Levy, D.: Central-upwind schemes for the saint-venant system. M2AN Math. Model. Numer. Anal. 36, 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system. Commun. Math. Sci. 5, 133–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kurganov, A., Petrova, G.: Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31, 1742–1773 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurganov, A., Tadmor, E.: New high resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kurganov, A., Tadmor, E.: Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers. Numer. Methods Partial Differ. Equ. 18, 584–608 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. LeVeque, R.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  33. Lie, K.-A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24, 1157–1174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lukáčová-Medviďová, M., Morton, K.W., Warnecke, G.: Evolution Galerkin methods for hyperbolic systems in two space dimensions. MathComp. 69, 1355–1384 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Lukáčová-Medviďová, M., Morton, K.W., Warnecke, G.: Finite volume evolution Galerkin methods for hyperbolic systems. SIAM J. Sci. Comp. 26(1), 1–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lukáčová-Medviďová, M., Noelle, S., Kraft, M.: Well-balanced finite volume evolution Galerkin methods for the shallow water equations. J. Comp. Phys. 221, 122–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Majda, A.: Introduction to PDEs and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, vol. 9. New York; American Mathematical Society, Providence, RI (2003)

  38. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Noelle, S., Xing, Y., Shu, C.-W.: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226, 29–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pedlosky, J.: Geophys. Fluid Dyn., 2nd edn. Springer-Verlag, New York (1987)

    Book  Google Scholar 

  42. Russo, G.: Central schemes for conservation laws with application to shallow water equations. In: Rionero, S., Romano, G. (eds.) Trends and Applications of Mathematics to Mechanics, pp. 225–246. Springer, Milan (2005)

  43. Stewart, A.L., Dellar, P.J.: Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane. J. Fluid Mech. 651, 387–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stewart, A.L., Dellar, P.J., Two-layer shallow water equations with complete Coriolis force and topography. In: Progress in Industrial Mathematics at ECMI: vol. 15 of Math. Ind. 2010 pp. 1033–1038. Springer, Heidelberg (2008)

  45. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer-Verlag, Berlin, Heidelberg (2009)

    Book  MATH  Google Scholar 

  47. Vallis, G .K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  48. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  MATH  Google Scholar 

  49. Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume weno schemes and discontinuous galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1, 100–134 (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of A. Chertock was supported in part by the NSF Grants DMS-1216974 and DMS-1521051 and the ONR Grant N00014-12-1-0832. The work of A. Kurganov was supported in part by the NSF Grants DMS-1216957 and DMS-1521009 and the ONR Grant N00014-12-1-0833. M. Lukáčová was supported by the German Science Foundation (DFG) Grants LU 1470/2-3 and SFB TRR 165 “Waves to Weather”. We would like to thank Doron Levy (University of Maryland) and Leonid Yelash (University of Mainz) for fruitful discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Lukáčová-Medvid’ová.

A derivation of FVEG evolution operators

A derivation of FVEG evolution operators

In this section, we derive new well-balanced evolution operators \(E_\tau ^{const}\) (4.11) and \(E_\tau ^{bilin}\) (4.14), used in (4.2), (4.3) and (4.4) with \(\tau =\Delta t/2\). Here, we only show how to evolve the values of the potentials K and L, since the evolution equations for the velocities u and v have been presented in [36].

The solution is going to be evolved from time \(t^n\) to time \(t^n+\tau \) and we are going to use the following notations, which are similar to the notations that were used in Sect. 4:

$$\begin{aligned} \begin{aligned}&P{:}{=}(x,y,t^n+\tau ),\quad Q_0(t){:}{=}\big (x-u^*(t^n+\tau -t),\, y-v^*(t^n+\tau -t),\,t\big ),\\&Q(t){:}{=}\big (x-[u^*-c^*\cos \theta ](t^n+\tau -t),\,y-[v^*-c^*\sin \theta ](t^n+\tau -t),\,t),\\&\quad t\in [t^n,t^n+\tau ), \end{aligned} \end{aligned}$$

where, as before, \(\theta \in (0,2\pi ]\), and \(u^*\), \(v^*\) and \(c^*\) are the local velocities and speed of gravity waves at the point \((x,y,t^n)\). Note that P is the vertex of the bicharacteristic cone, \(Q_0(t)\) are the points along the cone axis, Q(t) are the points on the mantle of the cone, and, in particular, \(Q(t^n)\) are the points at the perimeter of the sonic circle at time \(t^n\).

In order to obtain an expression for the evolution operators for K and L, we first write the exact integral equation for water depth h, which can be derived using the theory of bicharacteristics, see [36, (A5)]:

$$\begin{aligned} h(P)= & {} \frac{1}{2\pi }\int \limits _0^{2\pi }\left[ h(Q(t^n)) -\frac{c^*}{g}\Big (u(Q(t^n))\cos \theta -v(Q(t^n))\sin \theta \Big )\right] d\theta \nonumber \\&-\frac{1}{2\pi }\int \limits _{t^n}^{t^n+\tau }\bigg [\frac{1}{t^n +\tau -t}\int \limits _0^{2\pi }\frac{c^*}{g}\Big (u(Q(t))\cos \theta + v(Q(t))\sin \theta \Big )d\theta \bigg ]dt\nonumber \\&+\frac{c^*}{2\pi }\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [B_x(Q(t))\cos \theta +B_y(Q(t))\sin \theta \Big ]d\theta dt\nonumber \\&-\frac{c^*}{2\pi }\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [V_x(Q(t))\cos \theta -U_y(Q(t))\sin \theta \Big ]d\theta dt. \end{aligned}$$
(A.1)

We now rewrite the last integral on the RHS of (A.1) as

$$\begin{aligned} \begin{aligned}&\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [V_x(Q(t))\cos \theta -U_y(Q(t))\sin \theta \Big ]d\theta dt\\&=\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [V_x(Q(t))\cos \theta +V_y(Q(t))\sin \theta \Big ]d\theta dt\\&\quad - \int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi }\Big [V_y(Q(t)) \cos \theta +U_y(Q(t))\sin \theta \Big ]d\theta dt \end{aligned} \end{aligned}$$
(A.2)

Applying the rectangle rule for time integration and the Taylor expansion about \(Q_0(t^n)\), we can show that the last integral in (A.2) is of order \(\mathcal{O}(\tau ^2)\):

$$\begin{aligned} \begin{aligned}&\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [V_y(Q(t))\cos \theta +U_y(Q(t))\sin \theta \Big ]d\theta dt\\&=\int \limits _0^{2\pi }\Big [V_y(Q(t^n))\cos \theta +U_y(Q(t^n)) \sin \theta \Big ]d\theta +\mathcal{O}(\tau ^2)\\&=V_y(Q_0(t^n))\int \limits _0^{2\pi }\cos \theta \,d\theta +U_y(Q_0(t^n))\int \limits _0^{2\pi }\sin \theta \,d\theta +\mathcal{O}(\tau ^2)= \mathcal{O}(\tau ^2). \end{aligned} \end{aligned}$$

To evaluate the first integral on the RHS of (A.2), we introduce polar-type coordinates along the mantle of the bicharacteristic cone

$$\begin{aligned} \xi =x+r\Big (\cos \theta -\frac{u^*}{c^*}\Big ),\quad \eta =y+r\Big (\sin \theta -\frac{v^*}{c^*}\Big ), \end{aligned}$$

where \(r=c^*(t^n+\tau -t)\) is the circle radius at time level \(t\in [t^n,t^n+\tau ]\). Thus, we have

$$\begin{aligned} \frac{dV}{dr}(r,\theta )=V_x(\xi ,\eta )\cos \theta +V_y(\xi ,\eta )\sin \theta -\frac{1}{c^*}\Big (u^*V_x(\xi ,\eta ) +v^*V_y(\xi ,\eta )-V_t(\xi ,\eta ) \Big ), \end{aligned}$$

and hence we obtain

$$\begin{aligned} \begin{aligned}&\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [V_x(Q(t))\cos \theta +V_y(Q(t))\sin \theta \Big ]d\theta dt\\&=-\frac{1}{c^*}\int \limits _{c^*\tau }^0\int \limits _0^{2\pi } \frac{dV(r,\theta )}{dr}\,d\theta dr\\&\quad + \frac{1}{c^*}\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [u^*V_x(Q(t))+v^*V_y(Q(t))+V_t(Q(t))\Big ]d\theta dt\\&=\frac{1}{c^*}\int \limits _0^{c^*\tau }\frac{d}{dr}\Bigg (\int \limits _0^{2\pi }V(r,\theta )\,d\theta \Bigg )dr\\&\quad + \frac{1}{c^*}\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [u^*V_x(Q(t))+v^*V_y(Q(t))+V_t(Q(t))\Big ]d\theta dt\\&=\frac{1}{c^*}\bigg (\int \limits _0^{2\pi }V(Q(t^n))\,d\theta -2\pi V(P)\bigg )\\&\quad + \frac{1}{c^*}\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [u^*V_x(Q(t))+v^*V_y(Q(t))+V_t(Q(t))\Big ]d\theta dt. \end{aligned} \end{aligned}$$
(A.3)

Similarly, the third integral on the RHS of (A.1) is equal to

$$\begin{aligned} \begin{aligned}&\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [B_x(Q(t))\cos \theta +B_y(Q(t))\sin \theta \Big ]d\theta dt\\&=\frac{1}{c^*}\bigg (\int \limits _0^{2\pi }B(Q(t^n))\,d\theta -2\pi B(P)\bigg )+ \frac{1}{c^*}\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [u^*B_x(Q(t))+v^*B_y(Q(t))\Big ]d\theta dt, \end{aligned} \end{aligned}$$
(A.4)

since \(B_t\equiv 0\).

Combining (A.1), (A.3) and (A.4), we obtain the following approximation of the exact integral equations for \(K=g(h+B-V)\):

$$\begin{aligned} K(P)= & {} \frac{1}{2\pi }\int \limits _0^{2\pi }\bigg [K(Q(t^n)) -c^*\Big (u(Q(t^n))\cos \theta +v(Q(t^n))\sin \theta \Big )\bigg ]d\theta \nonumber \\&-\frac{1}{2\pi }\int \limits _{t^n}^{t^n+\tau }\bigg [\frac{1}{t^n+\tau -t}\int \limits _0^{2\pi }c^*\Big (u(Q(t))\cos \theta + v(Q(t))\sin \theta \Big )d\theta \bigg ]dt\nonumber \\&+\frac{g}{2\pi }\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [u^*B_x(Q(t))+v^*B_y(Q(t))\Big ]d\theta dt\nonumber \\&-\frac{g}{2\pi }\int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [u^*V_x(Q(t))+v^*V_y(Q(t))+V_t(Q(t))\Big ]d\theta dt. \end{aligned}$$
(A.5)

This formula provides the evolution equation for the equilibrium variable K. Our next goal is to approximate time integrals in (A.5) in a suitable way, so that we obtain explicit approximate evolution operators for \(E_\tau ^{const}\) (4.11) and \(E_\tau ^{bilin}\) (4.14). This will be realized in a standard way following [35] and a superscript I will be used for piecewise constant approximations, while a superscript II will be used for piecewise linear ones.

For the piecewise constant approximations, the spatial derivatives are zero and thus the corresponding integral terms in (A.5) vanish. Therefore, using the fact that

$$\begin{aligned} \int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi }V^\mathrm{I}_t(Q(t))\, d\theta dt= 2\pi \big [V^\mathrm{I}(P)-V^\mathrm{I}(Q_0(t^n))\big ]+\mathcal{O}(\tau ^2) \end{aligned}$$
(A.6)

and approximating the mantle integral of \(\,u^\mathrm{I}(Q(t))\cos \theta +v^\mathrm{I}(Q(t))\sin \theta \,\) according to [35], we obtain

$$\begin{aligned} \begin{aligned} K^\mathrm{I}(P)&\approx \frac{1}{2\pi }\int \limits _0^{2\pi } \Big [K^\mathrm{I}(Q(t^n))-c^*\Big (u^\mathrm{I}(Q(t^n))\text{ sgn }(\cos \theta )+ v^\mathrm{I}(Q(t^n))\text{ sgn }(\sin \theta )\Big )\Big ]d\theta \\&\quad +g\big [V^\mathrm{I}(Q_0(t^n))-V^\mathrm{I}(P)\big ], \end{aligned} \end{aligned}$$

which leads to (4.11).

For the piecewise linear approximations, the spatial derivatives do not vanish and we approximate the integrals in the corresponding terms in (A.5) by the rectangle rule to obtain

$$\begin{aligned} \int \limits _{t^n}^{t^n+\tau }\int \limits _0^{2\pi } \Big [u^*V^\mathrm{II}_x(Q(t))+v^*V^\mathrm{II}_y(Q(t))\Big ] d\theta dt= \tau \int \limits _0^{2\pi }\Big [u^*V^\mathrm{II}_x(Q(t^n)) +v^*V^\mathrm{II}_y(Q(t^n))\Big ]d\theta +\mathcal{O}(\tau ^2), \end{aligned}$$

which, together with a similar approximation of the bottom topography terms, leads to (4.14). Indeed, applying (A.6) and the standard approximation for the mantle integral of \(\,u^\mathrm{II}(Q(t))\cos \theta +v^\mathrm{II}(Q(t))\sin \theta \,\) as in [35], we finally obtain

$$\begin{aligned} \begin{aligned}&K^\mathrm{II}(P)=K^\mathrm{II}(Q_0(t^n))+\frac{1}{4}\int \limits _0^{2\pi }\Big (K^\mathrm{II}(Q(t^n))-K^\mathrm{II} (Q_0(t^n))\Big )d\theta \\&\quad -\frac{c^*}{\pi }\int \limits _0^{2\pi }\Big (u^\mathrm{II}(Q(t^n)) \cos \theta +v^\mathrm{II}(Q(t^n))\sin \theta \Big )d\theta \\&\quad +\frac{\tau }{2\pi }\int \limits _0^{2\pi }\Big [u^*\big (K^\mathrm{II}_x(Q(t^n))-gh^\mathrm{II}_x(Q(t^n))\big ) +v^*\big (K^\mathrm{II}_y(Q(t^n))-gh^\mathrm{II}_y(Q(t^n))\big ) \Big ]d\theta \\&\quad +g\big [V^\mathrm{II}(Q_0(t^n))-V^\mathrm{II}(P)\big ]. \end{aligned} \end{aligned}$$

Notice that the derivation of the approximate evolution operators for \(L^\mathrm{I}(P)\) and \(L^\mathrm{II}(P)\) is analogous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chertock, A., Dudzinski, M., Kurganov, A. et al. Well-balanced schemes for the shallow water equations with Coriolis forces. Numer. Math. 138, 939–973 (2018). https://doi.org/10.1007/s00211-017-0928-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0928-0

Mathematics Subject Classification

Navigation