Advertisement

Numerische Mathematik

, Volume 138, Issue 4, pp 1011–1026 | Cite as

An improved a priori error analysis of Nitsche’s method for Robin boundary conditions

  • Nora Lüthen
  • Mika Juntunen
  • Rolf Stenberg
Article

Abstract

In a previous paper (Juntunen and Stenberg in Math Comput 78:1353–1374, 2009) we have extended Nitsche’s method (in: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1970/71) for the Poisson equation with general Robin boundary conditions. The analysis required that the solution is in \(H^{s}\), with \(s>3/2\). Here we give an improved error analysis using a technique proposed by Gudi (Math Comput 79:2169–2189 2010).

Mathematics Subject Classification

65N30 

References

  1. 1.
    Ainsworth, M., Kelly, D.W.: A posteriori error estimators and adaptivity for finite element approximation of the non-homogeneous Dirichlet problem. Adv. Comput. Math. 15(2001), 3–23 (2002)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bartels, S., Carstensen, C., Dolzmann, G.: Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99, 1–24 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Braess, D.: Finite Elements; Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  4. 4.
    Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Vol. of 69 Mathematics and Applications. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations Theory and algorithms. Vol. 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  6. 6.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)Google Scholar
  7. 7.
    Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Juntunen, M., Stenberg, R.: Nitsche’s method for general boundary conditions. Math. Comput. 78, 1353–1374 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41, 2374–2399 (2003). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Morin, P., Nochetto, R .H., Siebert, K .G.: Local problems on stars: a posteriori error estimators, convergence, and performance. Math. Comput. 72, 1067–1097 (2003). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 36, pp. 9–15 (1970/71)Google Scholar
  12. 12.
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley, Hoboken (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Chair of Computational ScienceETH-ZentrumZurichSwitzerland
  2. 2.EspooFinland
  3. 3.Department of Mathematics and Systems AnalysisAalto University–School of ScienceEspooFinland

Personalised recommendations