Advertisement

Numerische Mathematik

, Volume 138, Issue 4, pp 801–838 | Cite as

Mesh requirements for the finite element approximation of problems with sign-changing coefficients

  • Anne-Sophie Bonnet-Ben Dhia
  • Camille Carvalho
  • Patrick CiarletJr
Article
  • 136 Downloads

Abstract

Transmission problems with sign-changing coefficients occur in electromagnetic theory in the presence of negative materials surrounded by classical materials. For general geometries, establishing Fredholmness of these transmission problems is well-understood thanks to the \(\mathtt {T}\)-coercivity approach. Moreover, for a plane interface, there exist meshing rules that guarantee an optimal convergence rate for the finite element approximation. We propose here a new treatment at the corners of the interface which allows to design meshing rules for an arbitrary polygonal interface and then recover standard error estimates. This treatment relies on the use of simple geometrical transforms to define the meshes. Numerical results illustrate the importance of this new design.

Mathematics Subject Classification

65N30 78A48 35J20 35B65 

References

  1. 1.
    Anantha Ramakrishna, S.: Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449–521 (2005)CrossRefGoogle Scholar
  2. 2.
    Bonnet-Ben Dhia, A.-S., Chesnel, L., Ciarlet Jr., P.: T-coercivity for scalar interface problems between dielectrics and metamaterials. Math. Model. Numer. Anal. 46, 1363–1387 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bonnet-Ben Dhia, A.-S., Carvalho, C., Chesnel, L., Ciarlet Jr., P.: On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients. J. Comput. Phys. 322, 224–247 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bonnet-Ben Dhia, A.-S., Chesnel, L., Claeys, X.: Radiation condition for a non-smooth interface between a dielectric and a metamaterial. Math. Models Methods Appl. Sci. 23, 1629–1662 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bonnet-Ben Dhia, A.-S.: Ciarlet Jr., P., Zwölf, C.M.: Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234, 1912–1919 (2010). Corrigendum p. 2616MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bonnet-Ben Dhia, A.-S., Dauge, M., Ramdani, K.: Analyse spectrale et singularités d’un problème de transmission non coercif. C. R. Acad. Sci. Paris Ser. I 328, 717–720 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)MATHGoogle Scholar
  8. 8.
    Carvalho, C.: Étude mathématique et numérique de structures plasmoniques avec des coins, Ph.D. thesis, École Polytechnique (2015)Google Scholar
  9. 9.
    Carvalho, C., Chesnel, L., Ciarlet Jr., P.: Eigenvalue problems with sign-changing coefficients. C. R. Acad. Sci. Paris Ser. I 355, 671–675 (2017)Google Scholar
  10. 10.
    Chesnel, L.: Étude de quelques problèmes de transmission avec changement de signe. Application aux métamatériaux, Ph.D. thesis, École Polytechnique (2012)Google Scholar
  11. 11.
    Chesnel, L., Ciarlet Jr., P.: T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. 124, 1–29 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chung, E.T., Ciarlet Jr., P.: A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials. J. Comput. Appl. Math. 239, 189–207 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ciarlet, P.G.: Mathematical Elasticity, Vol. III : Theory of Shells. North-Holland, Amsterdam (2000)MATHGoogle Scholar
  14. 14.
    Ciarlet Jr., P., Vohralik, M.: Robust a posteriori error control for transmission problems with sign-changing coefficients using localization of dual norms. Math. Model. Numer. Anal. (submitted)Google Scholar
  15. 15.
    Costabel, M., Stephan, E.: A direct boundary integral method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Grisvard, P.: Singularities in Boundary Value Problems, vol. 22. Masson, RMA, Paris (1992)MATHGoogle Scholar
  18. 18.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  19. 19.
    Nicaise, S., Venel, J.: A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients. J. Comput. Appl. Math. 235, 4272–4282 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ramdani, K.: Lignes supraconductrices : analyse mathématique et numérique, Ph.D. thesis, Université Paris 6 (1999)Google Scholar
  21. 21.
    Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Anne-Sophie Bonnet-Ben Dhia
    • 1
  • Camille Carvalho
    • 2
  • Patrick CiarletJr
    • 1
  1. 1.POEMS, ENSTA ParisTech, CNRS, INRIA, Université Paris-SaclayPalaiseau CedexFrance
  2. 2.Applied Mathematics Unit, School of Natural SciencesUniversity of California, MercedMercedUSA

Personalised recommendations