Skip to main content
Log in

A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We introduce a space–time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599–1635, 2016). Test and trial discrete functions are space–time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space–time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on “tent-pitched” meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Recall that if \({{\mathbf {F}}}\in H(\mathrm{div};D)\), \(D=D_1\cup D_2\cup \Sigma \subset \mathbb {R}^d\), \(d\in \mathbb {N}\), where \(D,D_1,D_2\) are Lipschitz domains with outward-pointing unit vectors \({{\mathbf {n}}}, {{\mathbf {n}}}_1,{{\mathbf {n}}}_2\), respectively and \(\Sigma \) is a Lipschitz hypersurface separating \(D_1\) and \(D_2\), then, by the divergence theorem and the well-definiteness of the normal traces in \(H(\mathrm{div};D)\) [2, eq. (2.6)],

    $$\begin{aligned} \int _\Sigma ({{\mathbf {F}}}_{|_{D_1}}\cdot {{\mathbf {n}}}_1+ {{\mathbf {F}}}_{|_{D_2}}\cdot {{\mathbf {n}}}_2)\,\mathrm {d}S&= \int _{\partial D_1}{{\mathbf {F}}}_{|_{D_1}}\cdot {{\mathbf {n}}}_1\,\mathrm {d}S + \int _{\partial D_2}{{\mathbf {F}}}_{|_{D_2}}\cdot {{\mathbf {n}}}_2\,\mathrm {d}S - \int _{\partial D}{{\mathbf {F}}}\cdot {{\mathbf {n}}}\,\mathrm {d}S\\&= \int _{D_1} \nabla \cdot {{\mathbf {F}}}_{|_{D_1}}\,\mathrm {d}V + \int _{D_2} \nabla \cdot {{\mathbf {F}}}_{|_{D_2}}\,\mathrm {d}V - \int _{D} \nabla \cdot {{\mathbf {F}}}\,\mathrm {d}V =0. \end{aligned}$$
  2. We recall that a set \(A\subset \mathbb {R}^N\) is called star-shaped with respect to a subset \(B\subset A\) if for all \({{\mathbf {a}}}\in A\) and \({{\mathbf {b}}}\in B\) the line segment with endpoints \({{\mathbf {a}}}\) and \({{\mathbf {b}}}\) is contained in A. In particular, a convex set is star-shaped with respect to any of its subsets.

References

  1. Abedi, R., Petracovici, B., Haber, R.B.: A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance. Comput. Methods Appl. Mech. Eng. 195(25–28), 3247–3273 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banjai, L., Georgoulis, E.H., Lijoka, O.: A Trefftz polynomial space-time discontinuous Galerkin method for the second order wave equation. SIAM J. Numer. Anal. 55(1), 63–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edn. Springer, New York (2007)

    MATH  Google Scholar 

  5. Cessenat, O., Despés, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35(1), 255–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  7. Costanzo, F., Huang, H.: Proof of unconditional stability for a single-field discontinuous Galerkin finite element formulation for linear elasto-dynamics. Comput. Methods Appl. Mech. Eng. 194(18–20), 2059–2076 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dörfler, W., Findeisen, S., Wieners, C.: Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems. Comput. Methods Appl. Math. 16, 409–428 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Durán, R.G.: On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20(5), 985–988 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Egger, H., Kretzschmar, F., Schnepp, S.M., Tsukerman, I., Weiland, T.: Transparent boundary conditions for a discontinuous Galerkin Trefftz method. Appl. Math. Comput. 267, 42–55 (2015)

    MathSciNet  Google Scholar 

  11. Egger, H., Kretzschmar, F., Schnepp, S.M., Weiland, T.: A Space-Time Discontinuous Galerkin Trefftz Method for Time Dependent Maxwell’s Equations. SIAM J. Sci. Comput. 37(5), B689–B711 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erickson, J., Guoy, D., Sullivan, J.M., Üngör, A.: Building spacetime meshes over arbitrary spatial domains. Eng. Comput. 20(4), 342–353 (2005)

    Article  Google Scholar 

  13. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 3rd edn. American Mathematical Society, Providence (2002)

    Google Scholar 

  14. Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36(3), 935–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. French, D.A.: A space-time finite element method for the wave equation. Comput. Methods Appl. Mech. Eng. 107(1–2), 145–157 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gopalakrishnan, J., Monk, P., Sepúlveda, P.: A tent pitching scheme motivated by Friedrichs theory. Comput. Math. Appl. 70, 1114–1135 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gopalakrishnan, J., Schöberl, J., Wintersteiger, C.: (2016) Mapped tent pitching schemes for hyperbolic systems. arXiv:1604.01081v1

  18. Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the \(p\)-version. SIAM J. Numer. Anal. 49, 264–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hiptmair, R., Moiola, A., Perugia, I.: Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the \(hp\)-Version. Found. Comput. Math. 16(3), 637–675 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hiptmair, R., Moiola, A., Perugia, I.: (2016) A survey of Trefftz methods for the Helmholtz equation. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computer Science of Engineering, pp. 237–278. Springer

  21. Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Mech. Eng. 66(3), 339–363 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johnson, C.: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107(1–2), 117–129 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kretzschmar, F.: (2015) The discontinuous Galerkin Trefftz method. Ph.D. thesis, Technische Universität Darmstadt. http://tuprints.ulb.tu-darmstadt.de/5166/

  24. Kretzschmar, F., Moiola, A., Perugia, I., Schnepp, S.M.: A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems. IMA J. Numer. Anal. 36(4), 1599–1635 (2016)

    Article  MathSciNet  Google Scholar 

  25. Kretzschmar, F., Schnepp, S.M., Tsukerman, I., Weiland, T.: Discontinuous Galerkin methods with Trefftz approximations. J. Comput. Appl. Math. 270, 211–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Z.C., Lu, T.T., Hu, H.Y., Cheng, A.H.D.: Trefftz and Collocation Methods. WIT Press, Southampton (2008)

    MATH  Google Scholar 

  27. Lilienthal, M., Schnepp, S.M., Weiland, T.: Non-dissipative space-time \(hp\)-discontinuous Galerkin method for the time-dependent Maxwell equations. J. Comput. Phys. 275, 589–607 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. I. Springer, New York: (Translated from the French by P, p. 181. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band (1972))

  29. Liu, C.S., Kuo, C.L.: A multiple-direction Trefftz method for solving the multi-dimensional wave equation in an arbitrary spatial domain. J. Comput. Phys. 321, 39–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maciaa̧g, A., Wauer, J.: (2005) Solution of the two-dimensional wave equation by using wave polynomials. J. Eng. Math. 51(4), 339–350

  31. Miles Jr., E.P., Williams, E.: A basic set of homogeneous harmonic polynomials in \(k\) variables. Proc. Am. Math. Soc. 6, 191–194 (1955)

    MathSciNet  MATH  Google Scholar 

  32. Miles Jr., E.P., Williams, E.: The Cauchy problem for linear partial differential equations with restricted boundary conditions. Can. J. Math. 8, 426–431 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moiola, A.: (2011) Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. Ph.D. thesis, Seminar for applied mathematics, ETH Zürich. doi:10.3929/ethz-a-006698757

  34. Moiola, A.: (2015) Trefftz discontinuous Galerkin methods on unstructured meshes for the wave equation. In: Proceedings of the XXIV CEDYA / XIV CMA Congress, Cadiz, Spain. arXiv:1505.00120

  35. Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22(23), 443–477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Monk, P., Wang, D.: A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175(1/2), 121–136 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

  38. Peake, M.J., Trevelyan, J., Coates, G.: The equal spacing of N points on a sphere with application to partition-of-unity wave diffraction problems. Eng. Anal. Bound. Elem. 40, 114–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Petersen, S., Farhat, C., Tezaur, R.: A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain. Int. J. Numer. Methods Eng. 78(3), 275–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Qin, Q.H.: Trefftz finite element method and its applications. Appl. Mech. Rev. 58(5), 316–337 (2005)

    Article  Google Scholar 

  41. Sayas, F.J.: Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Springer Series in Computational Mathematics, vol. 50. Springer, Berlin (2016)

    MATH  Google Scholar 

  42. Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21(1–2), 107–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Trefftz, E.: (1926) Ein Gegenstuck zum Ritzschen Verfahren. In: Proceedings of the 2nd International Congress on Applied Mechanics, Zurich, pp. 131–137

  44. Üngör, A., Sheffer, A.: Pitching tents in space-time: mesh generation for discontinuous Galerkin method. Int. J. Found. Comput. Sci. 13(2), 201–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, D., Tezaur, R., Farhat, C.: A hybrid discontinuous in space and time Galerkin method for wave propagation problems. Int. J. Numer. Methods Eng. 99(4), 263–289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Womersley, R.S., Sloan, I.H.: Interpolation and cubature on the sphere. http://web.maths.unsw.edu.au/~rsw/Sphere/

Download references

Acknowledgements

The authors are grateful to Blanca Ayuso de Dios, Thomas Hagstrom, Joachim Schöberl and Endre Süli for stimulating discussions in relation to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Moiola.

Additional information

I. Perugia has been funded by the Vienna Science and Technology Fund (WWTF) through the project MA14-006, and by the Austrian Science Fund (FWF) through the projects P 29197-N32 and F 65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiola, A., Perugia, I. A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math. 138, 389–435 (2018). https://doi.org/10.1007/s00211-017-0910-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0910-x

Mathematics Subject Classification

Navigation