Abstract
We introduce a space–time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599–1635, 2016). Test and trial discrete functions are space–time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space–time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on “tent-pitched” meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds.
Similar content being viewed by others
Notes
Recall that if \({{\mathbf {F}}}\in H(\mathrm{div};D)\), \(D=D_1\cup D_2\cup \Sigma \subset \mathbb {R}^d\), \(d\in \mathbb {N}\), where \(D,D_1,D_2\) are Lipschitz domains with outward-pointing unit vectors \({{\mathbf {n}}}, {{\mathbf {n}}}_1,{{\mathbf {n}}}_2\), respectively and \(\Sigma \) is a Lipschitz hypersurface separating \(D_1\) and \(D_2\), then, by the divergence theorem and the well-definiteness of the normal traces in \(H(\mathrm{div};D)\) [2, eq. (2.6)],
$$\begin{aligned} \int _\Sigma ({{\mathbf {F}}}_{|_{D_1}}\cdot {{\mathbf {n}}}_1+ {{\mathbf {F}}}_{|_{D_2}}\cdot {{\mathbf {n}}}_2)\,\mathrm {d}S&= \int _{\partial D_1}{{\mathbf {F}}}_{|_{D_1}}\cdot {{\mathbf {n}}}_1\,\mathrm {d}S + \int _{\partial D_2}{{\mathbf {F}}}_{|_{D_2}}\cdot {{\mathbf {n}}}_2\,\mathrm {d}S - \int _{\partial D}{{\mathbf {F}}}\cdot {{\mathbf {n}}}\,\mathrm {d}S\\&= \int _{D_1} \nabla \cdot {{\mathbf {F}}}_{|_{D_1}}\,\mathrm {d}V + \int _{D_2} \nabla \cdot {{\mathbf {F}}}_{|_{D_2}}\,\mathrm {d}V - \int _{D} \nabla \cdot {{\mathbf {F}}}\,\mathrm {d}V =0. \end{aligned}$$We recall that a set \(A\subset \mathbb {R}^N\) is called star-shaped with respect to a subset \(B\subset A\) if for all \({{\mathbf {a}}}\in A\) and \({{\mathbf {b}}}\in B\) the line segment with endpoints \({{\mathbf {a}}}\) and \({{\mathbf {b}}}\) is contained in A. In particular, a convex set is star-shaped with respect to any of its subsets.
References
Abedi, R., Petracovici, B., Haber, R.B.: A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance. Comput. Methods Appl. Mech. Eng. 195(25–28), 3247–3273 (2006)
Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)
Banjai, L., Georgoulis, E.H., Lijoka, O.: A Trefftz polynomial space-time discontinuous Galerkin method for the second order wave equation. SIAM J. Numer. Anal. 55(1), 63–86 (2017)
Brenner, S.C., Scott, L.R.: Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edn. Springer, New York (2007)
Cessenat, O., Despés, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35(1), 255–299 (1998)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 2nd edn. Springer, Berlin (1998)
Costanzo, F., Huang, H.: Proof of unconditional stability for a single-field discontinuous Galerkin finite element formulation for linear elasto-dynamics. Comput. Methods Appl. Mech. Eng. 194(18–20), 2059–2076 (2005)
Dörfler, W., Findeisen, S., Wieners, C.: Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems. Comput. Methods Appl. Math. 16, 409–428 (2016)
Durán, R.G.: On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20(5), 985–988 (1983)
Egger, H., Kretzschmar, F., Schnepp, S.M., Tsukerman, I., Weiland, T.: Transparent boundary conditions for a discontinuous Galerkin Trefftz method. Appl. Math. Comput. 267, 42–55 (2015)
Egger, H., Kretzschmar, F., Schnepp, S.M., Weiland, T.: A Space-Time Discontinuous Galerkin Trefftz Method for Time Dependent Maxwell’s Equations. SIAM J. Sci. Comput. 37(5), B689–B711 (2015)
Erickson, J., Guoy, D., Sullivan, J.M., Üngör, A.: Building spacetime meshes over arbitrary spatial domains. Eng. Comput. 20(4), 342–353 (2005)
Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 3rd edn. American Mathematical Society, Providence (2002)
Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36(3), 935–952 (1999)
French, D.A.: A space-time finite element method for the wave equation. Comput. Methods Appl. Mech. Eng. 107(1–2), 145–157 (1993)
Gopalakrishnan, J., Monk, P., Sepúlveda, P.: A tent pitching scheme motivated by Friedrichs theory. Comput. Math. Appl. 70, 1114–1135 (2015)
Gopalakrishnan, J., Schöberl, J., Wintersteiger, C.: (2016) Mapped tent pitching schemes for hyperbolic systems. arXiv:1604.01081v1
Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the \(p\)-version. SIAM J. Numer. Anal. 49, 264–284 (2011)
Hiptmair, R., Moiola, A., Perugia, I.: Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the \(hp\)-Version. Found. Comput. Math. 16(3), 637–675 (2016)
Hiptmair, R., Moiola, A., Perugia, I.: (2016) A survey of Trefftz methods for the Helmholtz equation. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computer Science of Engineering, pp. 237–278. Springer
Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Mech. Eng. 66(3), 339–363 (1988)
Johnson, C.: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107(1–2), 117–129 (1993)
Kretzschmar, F.: (2015) The discontinuous Galerkin Trefftz method. Ph.D. thesis, Technische Universität Darmstadt. http://tuprints.ulb.tu-darmstadt.de/5166/
Kretzschmar, F., Moiola, A., Perugia, I., Schnepp, S.M.: A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems. IMA J. Numer. Anal. 36(4), 1599–1635 (2016)
Kretzschmar, F., Schnepp, S.M., Tsukerman, I., Weiland, T.: Discontinuous Galerkin methods with Trefftz approximations. J. Comput. Appl. Math. 270, 211–222 (2014)
Li, Z.C., Lu, T.T., Hu, H.Y., Cheng, A.H.D.: Trefftz and Collocation Methods. WIT Press, Southampton (2008)
Lilienthal, M., Schnepp, S.M., Weiland, T.: Non-dissipative space-time \(hp\)-discontinuous Galerkin method for the time-dependent Maxwell equations. J. Comput. Phys. 275, 589–607 (2014)
Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. I. Springer, New York: (Translated from the French by P, p. 181. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band (1972))
Liu, C.S., Kuo, C.L.: A multiple-direction Trefftz method for solving the multi-dimensional wave equation in an arbitrary spatial domain. J. Comput. Phys. 321, 39–54 (2016)
Maciaa̧g, A., Wauer, J.: (2005) Solution of the two-dimensional wave equation by using wave polynomials. J. Eng. Math. 51(4), 339–350
Miles Jr., E.P., Williams, E.: A basic set of homogeneous harmonic polynomials in \(k\) variables. Proc. Am. Math. Soc. 6, 191–194 (1955)
Miles Jr., E.P., Williams, E.: The Cauchy problem for linear partial differential equations with restricted boundary conditions. Can. J. Math. 8, 426–431 (1956)
Moiola, A.: (2011) Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. Ph.D. thesis, Seminar for applied mathematics, ETH Zürich. doi:10.3929/ethz-a-006698757
Moiola, A.: (2015) Trefftz discontinuous Galerkin methods on unstructured meshes for the wave equation. In: Proceedings of the XXIV CEDYA / XIV CMA Congress, Cadiz, Spain. arXiv:1505.00120
Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22(23), 443–477 (2005)
Monk, P., Wang, D.: A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175(1/2), 121–136 (1999)
Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)
Peake, M.J., Trevelyan, J., Coates, G.: The equal spacing of N points on a sphere with application to partition-of-unity wave diffraction problems. Eng. Anal. Bound. Elem. 40, 114–122 (2014)
Petersen, S., Farhat, C., Tezaur, R.: A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain. Int. J. Numer. Methods Eng. 78(3), 275–295 (2009)
Qin, Q.H.: Trefftz finite element method and its applications. Appl. Mech. Rev. 58(5), 316–337 (2005)
Sayas, F.J.: Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Springer Series in Computational Mathematics, vol. 50. Springer, Berlin (2016)
Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21(1–2), 107–125 (2004)
Trefftz, E.: (1926) Ein Gegenstuck zum Ritzschen Verfahren. In: Proceedings of the 2nd International Congress on Applied Mechanics, Zurich, pp. 131–137
Üngör, A., Sheffer, A.: Pitching tents in space-time: mesh generation for discontinuous Galerkin method. Int. J. Found. Comput. Sci. 13(2), 201–221 (2002)
Wang, D., Tezaur, R., Farhat, C.: A hybrid discontinuous in space and time Galerkin method for wave propagation problems. Int. J. Numer. Methods Eng. 99(4), 263–289 (2014)
Womersley, R.S., Sloan, I.H.: Interpolation and cubature on the sphere. http://web.maths.unsw.edu.au/~rsw/Sphere/
Acknowledgements
The authors are grateful to Blanca Ayuso de Dios, Thomas Hagstrom, Joachim Schöberl and Endre Süli for stimulating discussions in relation to this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
I. Perugia has been funded by the Vienna Science and Technology Fund (WWTF) through the project MA14-006, and by the Austrian Science Fund (FWF) through the projects P 29197-N32 and F 65.
Rights and permissions
About this article
Cite this article
Moiola, A., Perugia, I. A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math. 138, 389–435 (2018). https://doi.org/10.1007/s00211-017-0910-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-017-0910-x