# Table 3 Results of the numerical experiments

Example Method No. iterations Final subspace dim. Time
CUBE $$n=10648, \; m=p=1$$ RADI—Penzl 97 97 18.96
RADI—Ham, $$\ell =2p$$ 119 119 17.10
RADI—Ham, $$\ell =6p$$ 99 99 14.15
RADI—Ham, $$\ell =\infty$$ 75 75 11.60
RADI—Ham + Opt, $$\ell =2p$$ 122 122 17.87
RADI—Ham + Opt, $$\ell =6p$$ 103 103 16.70
RADI—Ham + Opt, $$\ell =\infty$$ 108 108 18.44
EBA 111 222 6.23
Newton-ADI 2 outer, 296 inner 192 42.11
CUBE $$n=10648, \; m=p=10$$ RADI—Penzl 135 1350 49.19
RADI—Ham, $$\ell =2p$$ 139 1390 48.79
RADI—Ham, $$\ell =6p$$ 100 1000 35.92
RADI—Ham, $$\ell =\infty$$ 74 740 57.51
RADI—Ham + Opt, $$\ell =2p$$ 87 870 30.59
RADI—Ham + Opt, $$\ell =6p$$ 90 900 33.20
RADI—Ham + Opt, $$\ell =\infty$$ 90 900 119.55
EBA 91 1820 230.57
Newton-ADI 2 outer, 202 inner 1960 75.60
CUBE $$n=74088, \; m=10, \; p=1$$ RADI—Penzl 139 139 1048.60
RADI—Ham, $$\ell =2p$$ 97 97 617.62
RADI—Ham, $$\ell =6p$$ 81 81 506.37
RADI—Ham, $$\ell =\infty$$ 72 72 446.64
RADI—Ham + Opt, $$\ell =2p$$ 101 101 621.38
RADI—Ham + Opt, $$\ell =6p$$ 93 93 571.34
RADI—Ham + Opt, $$\ell =\infty$$ 63 63 387.43
EBA 81 162 30.45
Newton-ADI 2 outer, 288 inner 968 1546.29
CHIP $$n=20082, \; m=1, \; p=5$$ RADI—Penzl 33 165 51.57
RADI—Ham, $$\ell =2p$$ 36 180 30.32
RADI—Ham, $$\ell =6p$$ 29 145 24.36
RADI—Ham, $$\ell =\infty$$ 26 130 22.64
RADI—Ham + Opt, $$\ell =2p$$ 29 145 23.97
RADI—Ham + Opt, $$\ell =6p$$ 26 130 22.26
RADI—Ham + Opt, $$\ell =\infty$$ 25 125 22.33
EBA 26 260 6.69
Newton-ADI 2 outer, 64 inner 204 54.04
IFISS $$n=66049, \; m=p=5$$ RADI—Penzl >50 >250
RADI—Ham, $$\ell =2p$$ 22 110 17.21
RADI—Ham, $$\ell =6p$$ 19 95 15.37
RADI—Ham, $$\ell =\infty$$ 20 100 17.46
RADI—Ham + Opt, $$\ell =2p$$ 27 135 21.12
RADI—Ham + Opt, $$\ell =6p$$   Did not converge
RADI—Ham + Opt, $$\ell =\infty$$   Did not converge
EBA 11 110 9.26
Newton-ADI 2 outer, 46 inner 250 38.05
RAIL $$n=317377, \; m=7, \; p=6$$ RADI—Penzl 66 396 182.60
RADI—Ham, $$\ell =2p$$ 49 294 131.34
RADI—Ham, $$\ell =6p$$ 43 258 127.11
RADI—Ham, $$\ell =\infty$$ 46 276 197.06
RADI—Ham + Opt, $$\ell =2p$$ 46 276 124.13
RADI—Ham + Opt, $$\ell =6p$$ 40 240 120.04
RADI—Ham + Opt, $$\ell =\infty$$ 39 234 158.89
LUNG $$n=109460, \; m=p=10$$ RADI—Penzl   Did not converge
RADI—Ham, $$\ell =2p$$ 31 310 30.03
RADI—Ham, $$\ell =6p$$ 28 280 30.22
RADI—Ham, $$\ell =\infty$$ 26 260 34.83
RADI—Ham + Opt, $$\ell =2p$$ 25 250 22.33
RADI—Ham + Opt, $$\ell =6p$$ 17 170 17.74
RADI—Ham + Opt, $$\ell =\infty$$ 17 170 19.02