Numerische Mathematik

, Volume 137, Issue 1, pp 159–197 | Cite as

Adaptive finite element methods for an optimal control problem involving Dirac measures

  • Alejandro Allendes
  • Enrique OtárolaEmail author
  • Richard Rankin
  • Abner J. Salgado


The purpose of this work is the design and analysis of a reliable and efficient a posteriori error estimator for the so-called pointwise tracking optimal control problem. This linear-quadratic optimal control problem entails the minimization of a cost functional that involves point evaluations of the state, thus leading to an adjoint problem with Dirac measures on the right hand side; control constraints are also considered. The proposed error estimator relies on a posteriori error estimates in the maximum norm for the state and in Muckenhoupt weighted Sobolev spaces for the adjoint state. We present an analysis that is valid for two and three-dimensional domains. We conclude by presenting several numerical experiments which reveal the competitive performance of adaptive methods based on the devised error estimator.


Pointwise tracking optimal control problem Dirac measures A posteriori error analysis Adaptive finite elements Maximum norm Muckenhoupt weights Weighted Sobolev spaces 

Mathematics Subject Classification

49J20 49M25 65K10 65N15 65N30 65N50 65Y20 



The authors would like to thank Harbir Antil (George Mason University) for insightful discussions.


  1. 1.
    Achdou, Y.: An inverse problem for a parabolic variational inequality arising in volatility calibration with American options. SIAM J. Control Optim. 43(5), 1583–1615 (2005). doi: 10.1137/S0363012903424423 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agnelli, J.P., Garau, E.M., Morin, P.: A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM Math. Model. Numer. Anal. 48(6), 1557–1581 (2014). doi: 10.1051/m2an/2014010 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aimar, H., Carena, M., Durán, R., Toschi, M.: Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hung. 143(1), 119–137 (2014). doi: 10.1007/s10474-014-0389-1 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2000). doi: 10.1002/9781118032824 CrossRefzbMATHGoogle Scholar
  5. 5.
    Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(24), 501–520 (2000). doi: 10.1016/S0045-7825(99)00242-X.
  6. 6.
    Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). doi: 10.1137/S0895479899358194. (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Antil, H., Otárola, E., Salgado, A.J.: Some applications of weighted norm inequalities to the analysis of optimal control problems (2015). arXiv:1505.03919
  8. 8.
    Araya, R., Behrens, E., Rodríguez, R.: A posteriori error estimates for elliptic problems with dirac delta source terms. Numer. Math. 105(2), 193–216 (2006). doi: 10.1007/s00211-006-0041-2 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Araya, R., Behrens, E., Rodríguez, R.: An adaptive stabilized finite element scheme for a water quality model. Comput. Methods Appl. Mech. Eng. 196(2930), 2800–2812 (2007). doi: 10.1016/j.cma.2006.07.019.
  10. 10.
    Becker, R., Braack, M., Meidner, D., Rannacher, R., Vexler, B.: Adaptive finite element methods for PDE-constrained optimal control problems. In: Reactive Flows, Diffusion and Transport. Springer, Berlin (2007). doi: 10.1007/978-3-540-28396-6_8
  11. 11.
    Benedix, O., Vexler, B.: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44(1), 3–25 (2009). doi: 10.1007/s10589-008-9200-y MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brett, C., Dedner, A., Elliott, C.: Optimal control of elliptic PDEs at points. IMA J. Numer. Anal. (2015). doi: 10.1093/imanum/drv040
  13. 13.
    Casas, E.: \(L^2\) estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47(4), 627–632 (1985). doi: 10.1007/BF01389461 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chang, L., Gong, W., Yan, N.: Numerical analysis for the approximation of optimal control problems with pointwise observations. Math. Methods Appl. Sci. 38(18), 4502–4520 (2015). doi: 10.1002/mma.2861 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA (2002). doi: 10.1137/1.9780898719208 CrossRefzbMATHGoogle Scholar
  16. 16.
    D’Angelo, C.: Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012). doi: 10.1137/100813853 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dari, E., Durán, R.G., Padra, C.: Maximum norm error estimators for three-dimensional elliptic problems. SIAM J. Numer. Anal. 37(2), 683–700 (2000). doi: 10.1137/S0036142998340253 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dauge, M.: Neumann and mixed problems on curvilinear polyhedra. Integral Equ. Op. Theory 15(2), 227–261 (1992). doi: 10.1007/BF01204238 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Demlow, A., Georgoulis, E.H.: Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 50(5), 2159–2181 (2012). doi: 10.1137/110846397 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Demlow, A., Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems. Numer. Math. pp. 1–36 (2015). doi: 10.1007/s00211-015-0763-0
  21. 21.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996). doi: 10.1137/0733054 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Duoandikoetxea, J.: Fourier analysis. In: Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence, RI (2001). doi: 10.1090/gsm/029
  23. 23.
    Ern, A., Guermond, J.L.: Theory and practice of finite elements, In: Applied Mathematical Sciences, vol. 159. Springer, New York (2004). doi: 10.1007/978-1-4757-4355-5
  24. 24.
    Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Part. Diff. Eqs. 7(1), 77–116 (1982). doi: 10.1080/03605308208820218 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin. Reprint of the 1998 edition (2001). doi: 10.1007/978-3-642-61798-0
  26. 26.
    Gol’dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 361(7), 3829–3850 (2009). doi: 10.1090/S0002-9947-09-04615-7 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Grafakos, L.: Modern Fourier analysis. In: Graduate Texts in Mathematics. Springer. (2009)
  28. 28.
    Grisvard, P.: Elliptic problems in nonsmooth domains, In: Classics in Applied Mathematics, vol. 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). doi: 10.1137/1.9781611972030.ch1
  29. 29.
    Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008). doi: 10.1137/070683891 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hintermüller, M., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: Control Optim. Calc. of Var. 14, 540–560 (2008). doi: 10.1051/cocv:2007057.
  31. 31.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE constraints. In: Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009). doi: 10.1007/978-1-4020-8839-1
  32. 32.
    Hinze, M., Tröltzsch, F.: Discrete concepts versus error analysis in PDE-constrained optimization. GAMM-Mitt. 33(2), 148–162 (2010). doi: 10.1002/gamm.201010012 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications. SIAM (2008). doi: 10.1137/1.9780898718614
  34. 34.
    Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995). doi: 10.1006/jfan.1995.1067 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981). doi: 10.1090/S0273-0979-1981-14884-9 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Jost, J.: Partial differential equations. In: Graduate Texts in Mathematics, vol. 214, 3rd edn. Springer, New York (2013). doi: 10.1007/978-1-4614-4809-9
  37. 37.
    Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52(3), 1832–1861 (2014). doi: 10.1137/130909251 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. American Mathematical Society, Providence. RI (1997)zbMATHGoogle Scholar
  39. 39.
    Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55(3), 769–802 (2013). doi: 10.1007/s10589-013-9537-8 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lions, J.L.: Optimal control of systems governed by partial differential equations. In: Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer, Berlin (1971)Google Scholar
  41. 41.
    Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001). doi: 10.1023/A:1014239012739 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Maz’ya, V., Rossmann, J.: Elliptic equations in polyhedral domains. In: Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence, RI (2010). doi: 10.1090/surv/162
  43. 43.
    Meyer, C., Rademacher, A., Wollner, W.: Adaptive optimal control of the obstacle problem. SIAM J. Sci. Comput. 37(2), 918–945 (2015). doi: 10.1137/140975863 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000). doi: 10.1137/S0036142999360044. (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Nochetto, R.H.: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64(209), 1–22 (1995). doi: 10.2307/2153320 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015). doi: 10.1007/s10208-014-9208-x MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Nochetto, R.H., Otárola, E., Salgado, A.J.: Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132(1), 85–130 (2016). doi: 10.1007/s00211-015-0709-6
  49. 49.
    Nochetto, R.H., Schmidt, A., Siebert, K.G., Veeser, A.: Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math. 104(4), 515–538 (2006). doi: 10.1007/s00211-006-0027-0 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation. Springer (2009). doi: 10.1007/978-3-642-03413-8_12
  51. 51.
    Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Naldi, G., Russo G. (eds.) Multiscale and Adaptivity: Modeling, Numerics and Applications, CIME Lectures, pp. 125–225. Springer, Berlin, Heidelberg (2011). doi: 10.1007/978-3-642-24079-9_3
  52. 52.
    Rannacher, R., Vexler, B.: A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44(5), 1844–1863 (2005). doi: 10.1137/040611100 MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    De los Reyes, J.C.: Numerical PDE-Constrained Optimization. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  54. 54.
    Sacchi, R., Veeser, A.: Locally efficient and reliable a posteriori error estimators for Dirichlet problems. Math. Models Methods Appl. Sci. 16(3), 319–346 (2006). doi: 10.1142/S0218202506001170 MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Savaré, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152(1), 176–201 (1998). doi: 10.1006/jfan.1997.3158 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Scott, L.R.: Finite element convergence for singular data. Numer. Math. 21, 317–327 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Seidman, T.I., Gobbert, M.K., Trott, D.W., Kružík, M.: Finite element approximation for time-dependent diffusion with measure-valued source. Numer. Math. 122(4), 709–723 (2012). doi: 10.1007/s00211-012-0474-8 MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. AMS, Providence, RI (2010)CrossRefzbMATHGoogle Scholar
  59. 59.
    Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer, Berlin (2000). doi: 10.1007/BFb0103908 CrossRefzbMATHGoogle Scholar
  60. 60.
    Unger, A., Tröltzsch, F.: Fast solution of optimal control problems in the selective cooling of steel. ZAMM Z. Angew. Math. Mech. 81(7), 447–456 (2001). doi: 10.1002/1521-4001(200107)81:7<447::AID-ZAMM447>3.3.CO;2-L MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989). doi: 10.1007/BF01390056 MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh–Refinement Techniques. Wiley, New York (1996)zbMATHGoogle Scholar
  63. 63.
    Vexler, B., Wollner, W.: Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47(1), 509–534 (2008). doi: 10.1137/070683416 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alejandro Allendes
    • 1
  • Enrique Otárola
    • 1
    Email author
  • Richard Rankin
    • 1
  • Abner J. Salgado
    • 2
  1. 1.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Department of MathematicsUniversity of TennesseeKnoxvilleUSA

Personalised recommendations