Abstract
The solution of PDE with stochastic data commonly leads to very high-dimensional algebraic problems, e.g. when multiplicative noise is present. The Stochastic Galerkin FEM considered in this paper then suffers from the curse of dimensionality. This is directly related to the number of random variables required for an adequate representation of the random fields included in the PDE. With the presented new approach, we circumvent this major complexity obstacle by combining two highly efficient model reduction strategies, namely a modern low-rank tensor representation in the tensor train format of the problem and a refinement algorithm on the basis of a posteriori error estimates to adaptively adjust the different employed discretizations. The adaptive adjustment includes the refinement of the FE mesh based on a residual estimator, the problem-adapted stochastic discretization in anisotropic Legendre Wiener chaos and the successive increase of the tensor rank. Computable a posteriori error estimators are derived for all error terms emanating from the discretizations and the iterative solution with a preconditioned ALS scheme of the problem. Strikingly, it is possible to exploit the tensor structure of the problem to evaluate all error terms very efficiently. A set of benchmark problems illustrates the performance of the adaptive algorithm with higher-order FE. Moreover, the influence of the tensor rank on the approximation quality is investigated.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [Wiley], New York (2000)
Babuška, I., Chatzipantelidis, P.: On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 191(37–38), 4093–4122 (2002)
Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)
Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)
Babuška, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194(12–16), 1251–1294 (2005)
Bachmayr, M., Cohen, A., Migliorati, G.: Sparse polynomial approximation of parametric elliptic pdes. Part i: affine coefficients (2015). arXiv:1509.07045
Ballani, J., Grasedyck, L.: Hierarchical tensor approximation of output quantities of parameter-dependent pdes. SIAM/ASA J. Uncertainty Quantification. 3(1), 852–872 (2015)
Bespalov, A., Powell, C.E., Silvester, D.: Energy norm a posteriori error estimation for parametric operator equations. SIAM J. Sci. Comput. 36(2), A339–A363 (2014)
Braess, D.: Finite Elements: Theory, fast solvers, and applications in elasticity theory (Translated from the German by Schumaker, L.L) Cambridge University Press, Cambridge (2007)
Carstensen, C., Eigel, M., Hoppe, R.H.W., Löbhard, C.: A review of unified a posteriori finite element error control. Numer. Math. Theor. Methods. Appl. 5(4), 509–558 (2012)
Chen, P., Quarteroni, A., Rozza, G.: A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 51(6), 3163–3185 (2013)
Chen, P., Quarteroni, A., Rozza, G.: Comparison between reduced basis and stochastic collocation methods for elliptic problems. J. Sci. Comput. 59(1), 187–216 (2014)
Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best \(N\)-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10(6), 615–646 (2010)
Cohen, A., Devore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9(1), 11–47 (2011)
de Silva, V., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)
Deb, M.K., Babuška, I.M., Oden, J.T.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190(48), 6359–6372 (2001)
Sergey, D., Khoromskij, B.N., Litvinenko, A., Matthies, H.G.: Computation of the response surface in the tensor train data format (2014). arXiv:1406.2816
Dolgov, S., Khoromskij, B.N., Litvinenko, A., Matthies, H.G.: Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format (2015). arXiv preprint. arXiv:1503.03210
Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014)
Eigel, M., Gittelson, C.J., Schwab, C., Zander, E.: Adaptive stochastic Galerkin FEM. Comput. Methods Appl. Mech. Eng. 270, 247–269 (2014)
Eigel, M., Gittelson, C.J., Schwab, C., Zander, E.: A convergent adaptive stochastic galerkin finite element method with quasi-optimal spatial meshes. ESAIM Math. Model. Numer. Anal. 49(5), 1367–1398 (2015)
Eigel, M., Merdon, C.: Local equilibration error estimators for guaranteed error control in adaptive stochastic higher-order galerkin fem. WIAS Preprint (1997) (2014)
Eigel, M., Zander, E.: \(\mathtt{alea}\)—A Python Framework for Spectral Methods and Low-Rank Approximations in Uncertainty Quantification. https://bitbucket.org/aleadev/alea
Ernst, O.G., Mugler, A., Starkloff, H., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. Technical Report 60, DFG Schwerpunktprogramm 1324, (2010)
Espig, M., Hackbusch, W., Khachatryan, A.: On the convergence of alternating least squares optimisation in tensor format Representations. 423, (2015). arXiv:1506.00062
Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Wähnert, P.: Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats. Preprint, Max Planck Institute for Mathematics in the Sciences (2012)
Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Zander, E.: Efficient analysis of high dimensional data in tensor formats. In Sparse Grids and Applications, pp. 31–56. Springer (2013)
FEniCS Project - Automated solution of Differential Equations by the Finite Element Method. http://fenicsproject.org
Fischer, J., Otto, F.: A higher-order large-scale regularity theory for random elliptic operators. MPI-MIS preprint Leipzig (2015)
Frauenfelder, P., Christoph, S., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194(2–5), 205–228 (2005)
Garcia, L.D., Stillman, M., Sturmfels, B.: Algebraic geometry of bayesian networks. J. Symbolic Comput. 39(3–4), 331–355 (2005). (Special issue on the occasion of MEGA 2003)
Ghanem, R.G., Kruger, R.M.: Numerical solution of spectral stochastic finite element systems. Comput. Methods Appl. Mech. Eng. 129(3), 289–303 (1996)
Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)
Gittelson, C.J.: Stochastic Galerkin approximation of operator equations with infinite dimensional noise. Technical Report 2011-10, Seminar for Applied Mathematics, ETH Zürich (2011)
Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010)
Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)
Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer Series in Computational Mathematics, vol. 42. Springer, Heidelberg (2012)
Hackbusch, W.: Numerical tensor calculus. Acta Numer. 23, 651–742 (2014)
Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)
Hackbusch, W., Schneider,R.: Tensor spaces and hierarchical tensor representations. In: Extr. Quant. Inf. Complex Syst., pp. 237–261. Springer (2014)
Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in the tensor train format. SIAM J. Sci. Comput. 34(2), A683–A713 (2012)
Holtz, S., Rohwedder, T., Schneider, R.: On manifolds of tensors of fixed TT-rank. Numerische Mathematik 120(4), 701–731 (2012)
Khoromskij, B.N., Oseledets, I.V.: Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs. Comput. Methods Appl. Math. 10(4), 376–394 (2010)
Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
Landsberg, J.M.: Tensors: Geometry and Applications. In: Graduate studies in mathematics, American Mathematical Society, USA (2012)
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)
Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005)
Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)
Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)
Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
Oseledets, I.V.: ttpy - A Python Implementation of the TT-Toolbox. https://github.com/oseledets/ttpy
Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
Oseledets, I.V., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432(1), 70–88 (2010)
Pellissetti, M.F., Ghanem, R.G.: Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv. Eng. Softw. 31(8), 607–616 (2000)
Powell, C.E., Elman, H.C.: Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29, 350–375 (2009)
Rohwedder, T., Uschmajew, A.: On local convergence of alternating schemes for optimization of convex problems in the tensor train format. SIAM J. Numer. Anal. 51(2), 1134–1162 (2013)
Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung. Mathematische Annalen 63, 433–476 (1907)
Schneider, R., Uschmajew, A.: Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality. SIAM J. Optim. 25(1), 622–646 (2015)
Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)
Szalay, S., Pfeffer, M., Murg, V., Barcza, G., Verstraete, F., Schneider, R., Legeza,Ö.: Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 115(19), 1342–1391 (2015) doi:10.1002/qua.24898
Ullmann, E.: A kronecker product preconditioner for stochastic galerkin finite element discretizations. SIAM J. Sci. Comput. 32(2), 923–946 (2010)
Uschmajew, A., Vandereycken, B.: The geometry of algorithms using hierarchical tensors. Linear Algebra Appl 439(1), 133–166 (2013)
Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner Verlag and J. Wiley, Stuttgart (1996)
Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005). (electronic)
Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191(43), 4927–4948 (2002)
Acknowledgements
M.P. and R.S. were supported by the DFG project ERA Chemistry; additionally R.S. was supported through Matheon by the Einstein Foundation Berlin.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eigel, M., Pfeffer, M. & Schneider, R. Adaptive stochastic Galerkin FEM with hierarchical tensor representations. Numer. Math. 136, 765–803 (2017). https://doi.org/10.1007/s00211-016-0850-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-016-0850-x
Keywords
- Partial differential equations with random coefficients
- Tensor representation
- Tensor train
- Uncertainty quantification
- Stochastic finite element methods
- Operator equations
- Adaptive methods
- ALS
- Low-rank
- Reduced basis methods