Skip to main content
Log in

On Trefftz’ integral equation for the Bernoulli free boundary value problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose a new numerical method for the solution of Bernoulli’s free boundary value problem for a harmonic function w in a doubly connected domain D in \(\mathbb {R}^2\) where an unknown free boundary \(\varGamma _0\) is determined by prescribed Cauchy data of w on \(\varGamma _0\) in addition to a Dirichlet condition on the known boundary \(\varGamma _1\). Our method is based on a two-by-two system of boundary integral equations for the unknown boundary \(\varGamma _0\) and the unknown normal derivative \(g=\partial _\nu w\) of w on \(\varGamma _1\). This system is nonlinear with respect to \(\varGamma _0\) and linear with respect to g and we suggest to solve it simultaneously for \(\varGamma _0\) and g by Newton iterations. We establish a local convergence result and exhibit the feasibility of the method by a few numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acker, A.: On the geometric form of Bernoulli configurations. Math. Methods Appl. Sci. 01, 1–14 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 015–144 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Ben Abda, A., Bouchon F., Peichl , G.H., Sayeh, M., Touzani, R.; A Dirichlet–Neumann cost functional approach for the Bernoulli problem. J. Eng. Math. 81, 157–176 (2013)

  4. Berger, M.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)

    MATH  Google Scholar 

  5. Beurling, A.: On free boundary problems for the Laplace equation. Sem. on Analytic Functions. Inst. for Advanced Study, vol. 1, Princeton, pp. 248–263 (1957)

  6. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  7. Evans, L.: Partial Differential Equations. AMS, Providence (1998)

    MATH  Google Scholar 

  8. Flucher, M., Rumpf, M.: Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486, 165–204 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Garabedian, P.R.: Partial Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  10. Haddar, H., Kress, R.: A conformal mapping algorithm for the Bernoulli free boundary value problem. Math. Meth. Appl. Sci. 39, 2477–2487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harbrecht, H., Mitrou, G.: Improved trial methods for a class of generalized Bernoulli problems. J. Math. Anal. Appl. 420, 177–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harbrecht, H., Mitrou, G.: Stabilization of the trial method for the Bernoulli problem in case of prescribed Dirichlet data. Math. Methods Appl. Sci. 38, 2850–2863 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  14. Kress, R.: Integral Equations, 3rd edn. Springer, New York (2014)

    Book  MATH  Google Scholar 

  15. Kress, R., Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems 21, 1207–1223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuster, C.M., Gremaud, P.A., Touzani, R.: Fast numerical methods for Bernoulli free boundary problems. SIAM J. Sci. Comput. 29, 622–634 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewy, H.: A note on harmonic functions and hydrodynamic problem. Proc. Am. Math. Soc. 3, 111–113 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Potthast, R.: Domain derivatives in electromagnetic scattering. Math. Methods Appl. Sci. 19, 1157–1175 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tepper, D.E.: Free boundary problem. SIAM J. Math. Anal. 5, 841–846 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Trefftz, E.: Über die Kontraktion kreisförmiger Flüssigkeitsstrahlen. Z. Math. Phys. 64, 34–61 (1916)

    MATH  Google Scholar 

  21. Wegmann, R.: A constructive method for a free boundary value problem of potential theory. In: Kress, Weck (eds.) Free and Mixed Boundary Value Problems Lang, Frankfurt, pp. 61–79 (1978)

  22. Wegmann, R.: Trefftz’ integral equation method for free boundary problems of potential theory. In: Albrecht, J. (ed.) Numerical Treatment of Free Boundary Value Problems, pp. 335–349. Birkhäuser, Stuttgart (1981)

  23. Wegmann, R.: A free boundary problem for three-dimensional harmonic vector fields. Math. Methods Appl. Sci. 9, 367–398 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Kress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kress, R. On Trefftz’ integral equation for the Bernoulli free boundary value problem. Numer. Math. 136, 503–522 (2017). https://doi.org/10.1007/s00211-016-0847-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0847-5

Mathematics Subject Classification

Navigation