Abstract
We propose a new numerical method for the solution of Bernoulli’s free boundary value problem for a harmonic function w in a doubly connected domain D in \(\mathbb {R}^2\) where an unknown free boundary \(\varGamma _0\) is determined by prescribed Cauchy data of w on \(\varGamma _0\) in addition to a Dirichlet condition on the known boundary \(\varGamma _1\). Our method is based on a two-by-two system of boundary integral equations for the unknown boundary \(\varGamma _0\) and the unknown normal derivative \(g=\partial _\nu w\) of w on \(\varGamma _1\). This system is nonlinear with respect to \(\varGamma _0\) and linear with respect to g and we suggest to solve it simultaneously for \(\varGamma _0\) and g by Newton iterations. We establish a local convergence result and exhibit the feasibility of the method by a few numerical examples.
Similar content being viewed by others
References
Acker, A.: On the geometric form of Bernoulli configurations. Math. Methods Appl. Sci. 01, 1–14 (1988)
Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 015–144 (1981)
Ben Abda, A., Bouchon F., Peichl , G.H., Sayeh, M., Touzani, R.; A Dirichlet–Neumann cost functional approach for the Bernoulli problem. J. Eng. Math. 81, 157–176 (2013)
Berger, M.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)
Beurling, A.: On free boundary problems for the Laplace equation. Sem. on Analytic Functions. Inst. for Advanced Study, vol. 1, Princeton, pp. 248–263 (1957)
Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
Evans, L.: Partial Differential Equations. AMS, Providence (1998)
Flucher, M., Rumpf, M.: Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486, 165–204 (1997)
Garabedian, P.R.: Partial Differential Equations. Wiley, New York (1964)
Haddar, H., Kress, R.: A conformal mapping algorithm for the Bernoulli free boundary value problem. Math. Meth. Appl. Sci. 39, 2477–2487 (2016)
Harbrecht, H., Mitrou, G.: Improved trial methods for a class of generalized Bernoulli problems. J. Math. Anal. Appl. 420, 177–194 (2014)
Harbrecht, H., Mitrou, G.: Stabilization of the trial method for the Bernoulli problem in case of prescribed Dirichlet data. Math. Methods Appl. Sci. 38, 2850–2863 (2015)
Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York (2011)
Kress, R.: Integral Equations, 3rd edn. Springer, New York (2014)
Kress, R., Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems 21, 1207–1223 (2005)
Kuster, C.M., Gremaud, P.A., Touzani, R.: Fast numerical methods for Bernoulli free boundary problems. SIAM J. Sci. Comput. 29, 622–634 (2007)
Lewy, H.: A note on harmonic functions and hydrodynamic problem. Proc. Am. Math. Soc. 3, 111–113 (1952)
Potthast, R.: Domain derivatives in electromagnetic scattering. Math. Methods Appl. Sci. 19, 1157–1175 (1996)
Tepper, D.E.: Free boundary problem. SIAM J. Math. Anal. 5, 841–846 (1974)
Trefftz, E.: Über die Kontraktion kreisförmiger Flüssigkeitsstrahlen. Z. Math. Phys. 64, 34–61 (1916)
Wegmann, R.: A constructive method for a free boundary value problem of potential theory. In: Kress, Weck (eds.) Free and Mixed Boundary Value Problems Lang, Frankfurt, pp. 61–79 (1978)
Wegmann, R.: Trefftz’ integral equation method for free boundary problems of potential theory. In: Albrecht, J. (ed.) Numerical Treatment of Free Boundary Value Problems, pp. 335–349. Birkhäuser, Stuttgart (1981)
Wegmann, R.: A free boundary problem for three-dimensional harmonic vector fields. Math. Methods Appl. Sci. 9, 367–398 (1987)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kress, R. On Trefftz’ integral equation for the Bernoulli free boundary value problem. Numer. Math. 136, 503–522 (2017). https://doi.org/10.1007/s00211-016-0847-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-016-0847-5