Skip to main content
Log in

Prony’s method in several variables

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The paper gives an extension of Prony’s method to the multivariate case which is based on the relationship between polynomial interpolation, normal forms modulo ideals and H-bases. Though the approach is mainly of algebraic nature, we also give an algorithm using techniques from Numerical Linear Algebra to solve the problem in a fast and efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Or, M, Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proc. Twentieth Annual ACM Symp. Theory Comput., pp. 301–309. ACM Press, New York (1988)

  2. Boor, C.: Computational aspects of multivariate polynomial interpolation: Indexing the coefficients. Adv. Comput. Math. 12, 289–301 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boor, C.d.: Ideal interpolation. In: C.K. Chui, M. Neamtu, L.L. Schumaker (eds.) Approximation Theory XI, Gaitlinburg 2004, pp. 59–91. Nashboro Press (2005)

  4. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Innsbruck (1965)

  5. Buhmann, M.D., Pinkus, A.: On a recovery problem. Ann. Num. Math. 4, 129–142 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Cohen, A.M., Cuypers, H., Sterk, M. (eds.): Some tapas of computer algebra, algorithms and computations in mathematics, vol. 4. Springer (1999)

  7. Cox, D., Little, J., O’Shea, D.: Ideals, varieties and algorithms, Undergraduate texts in mathematics, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  8. Czekansky, J., Sauer, T.: The multivariate Horner scheme revisited. BIT 55, 1043–1056 (2015). doi:10.1007/s10543-014-0533-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Diederichs, B., Iske, A.: Parameter estimation for bivariate exponential sums. In: IEEE International Conference Sampling Theorey and Applications, pp. 493–497 (2015)

  10. Eaton, J.W., Bateman, D., Hauberg, S.: GNU Octave version 3.0.1 manual: a high-level interactive language for numerical computations. CreateSpace Independent Publishing Platform (2009). www.gnu.org/software/octave/doc/interpreter. ISBN 1441413006

  11. Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12, 377–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giesbrecht, M., Labahn, G., Lee, W.: Symbolic-numeric sparse interpolation of multivariate polynomials. J. Symb. Comput. 44, 943–959 (2009)

    Article  MATH  Google Scholar 

  13. Golub, G., van Loan, C.F.: Matrix computations, 3rd edn. The Johns Hopkins University Press (1996)

  14. Gröbner, W.: Über das Macaulaysche inverse System und dessen Bedeutung für die Theorie der linearen Differentialgleichungen mit konstanten Koeffizienten. Abh. Math. Sem. Hamburg 12, 127–132 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gröbner, W.: Algebraische Geometrie II. No. 737 in B.I–Hochschultaschenbücher. Bibliographisches Institut Mannheim (1970)

  16. Heldt, D., Kreuzer, M., Pokutta, S., Poulisse, H.: Approximate computation of zero-dimensional polynomial ideals. J. Symb. Comput. 44, 1566–1591 (2009)

    Article  MATH  Google Scholar 

  17. Hua, Y., Sarkar, T.K.: Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoustics, Speech and Signal Processing 38, 814–824 (1990)

  18. Kunis, S., Peter, T., Römer, T., von der Ohe, U.: A multivariate generalization of Prony’s method. Linear Algebra Appl. 490, 31–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laurent, M., Mourrain, B.: A generalized flat extension theorem for moment matrices. Arch. Math. 93, 87–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge Mathematical Library. Cambridge University Press. Introduction by Paul Roberts (1994)

  21. Micchelli, C.A.: A constructive approach to Kergin interpolation in \(\mathbb{R}^k\): multivariate B-splines and Lagrange interpolation. Rocky Mt. J. Math. 10, 485–497 (1980)

    Article  MATH  Google Scholar 

  22. Möller, H.M., Sauer, T.: H-bases for polynomial interpolation and system solving. Advances Comput. Math. 12(4):335–362 (2000). To appear

  23. Möller, H.M., Sauer, T.: H-bases I: The foundation. In: Cohen, A., Rabut, C., Schumaker, L.L. (eds.) Curve and surface fitting: Saint–Malo 1999, pp. 325–332. Vanderbilt University Press (2000)

  24. Möller, H.M., Sauer, T.: H-bases II: applications to numerical problems. In: Cohen, A., Rabut, C., Schumaker, L.L. (eds.) Curve and surface fitting: Saint–Malo 1999, pp. 333–342. Vanderbilt University Press (2000)

  25. Möller, H.M., Stetter, H.J.: Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems. Numer. Math. 70, 311–329 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Möller, H.M., Tenberg, R.: Multivariate polynomial system solving using intersections of eigenspaces. J. Symb. Comput. 32, 513–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peña, J.M., Sauer, T.: On the multivariate Horner scheme. SIAM J. Numer. Anal. 37, 1186–1197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM-Mitt. 37, 239–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Plonka, G., Wischerhoff, M.: How many fourier samples are needed for real function reconstruction? J. Appl. Math. Comput. 42, 117–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Plonka, G., Wischerhoff, M.: Reconstruction of polygonal shapes from sparse fourier samples. J. Comput. Appl. Math. 297, 117–131 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Potts, D., Tasche, M.: Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal. 40, 204–224 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439, 1024–1039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Potts, D., Tasche, M.: Fast ESPRIT algorithms based on partial singular value decompositions. Appl. Numer. Math. 88, 31–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prony, C.: Essai expérimental et analytique sur les lois de la dilabilité des fluides élastiques, et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. J. de l’École polytechnique 2:24–77 (1795)

  35. Roy, R., Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoustics, Speech and Signal Processing 37:984–995 (1989)

  36. Sauer, T.: Computational aspects of multivariate polynomial interpolation. Adv. Comput. Math. 3(3), 219–238 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sauer, T.: Gröbner bases, H-bases and interpolation. Trans. Am. Math. Soc. 353, 2293–2308 (2001)

    Article  MATH  Google Scholar 

  38. Sauer, T.: Ideal bases for graded polynomial rings and applications to interpolation. In: M. Gasca (ed.) Multivariate Approximation and Interpolation with Applications, Monograph. Academia de Ciencias de Zaragoza, vol. 20, pp. 97–110. Academia de Ciencias Zaragoza (2002)

  39. Sauer, T.: Polynomial interpolation in several variables: Lattices, differences, and ideals. In: M. Buhmann, W. Hausmann, K. Jetter, W. Schaback, J. Stöckler (eds.) Multivariate Approximation and Interpolation, pp. 189–228. Elsevier (2006)

  40. Sauer, T.: Approximate varieties, approximate ideals and dimension reduction. Numer. Algo. 45, 295–313 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  42. Stetter, H.J.: Matrix eigenproblems at the heart of polynomial system solving. SIGSAM Bull. 30(4), 22–25 (1995)

    Article  MATH  Google Scholar 

  43. Sturmfels, B.: Solving Systems of Polynomial Equations. No. 97 in CMBS Regional Conference Series in Mathematics. AM (2002)

  44. Xu, Y.: Common zeros of polynomials in several variables and higher dimensional quadrature. Pittman Research Monographs, Longman Scientific and Technical (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Sauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauer, T. Prony’s method in several variables. Numer. Math. 136, 411–438 (2017). https://doi.org/10.1007/s00211-016-0844-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0844-8

Mathematics Subject Classification

Navigation