Numerische Mathematik

, Volume 136, Issue 1, pp 183–213 | Cite as

Randomized estimation of spectral densities of large matrices made accurate



For a large Hermitian matrix \(A\in \mathbb {C}^{N\times N}\), it is often the case that the only affordable operation is matrix–vector multiplication. In such case, randomized method is a powerful way to estimate the spectral density (or density of states) of A. However, randomized methods developed so far for estimating spectral densities only extract information from different random vectors independently, and the accuracy is therefore inherently limited to \(\mathcal {O}(1/\sqrt{N_{v}})\) where \(N_{v}\) is the number of random vectors. In this paper we demonstrate that the “\(\mathcal {O}(1/\sqrt{N_{v}})\) barrier” can be overcome by taking advantage of the correlated information of random vectors when properly filtered by polynomials of A. Our method uses the fact that the estimation of the spectral density essentially requires the computation of the trace of a series of matrix functions that are numerically low rank. By repeatedly applying A to the same set of random vectors and taking different linear combination of the results, we can sweep through the entire spectrum of A by building such low rank decomposition at different parts of the spectrum. Under some assumptions, we demonstrate that a robust and efficient implementation of such spectrum sweeping method can compute the spectral density accurately with \(\mathcal {O}(N^2)\) computational cost and \(\mathcal {O}(N)\) memory cost. Numerical results indicate that the new method can significantly outperform existing randomized methods in terms of accuracy. As an application, we demonstrate a way to accurately compute a trace of a smooth matrix function, by carefully balancing the smoothness of the integrand and the regularized density of states using a deconvolution procedure.

Mathematics Subject Classification

15A18 65F15 



This work is partially supported by the Scientific Discovery through Advanced Computing (SciDAC) program and the Center for Applied Mathematics for Energy Research Applications (CAMERA) funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences, and by the Alfred P. Sloan fellowship. We thank the anonymous referees for their comments that greatly improved the paper.


  1. 1.
    Schwartz, L.: Mathematics for the Physical Sciences. Dover, New York (1966)zbMATHGoogle Scholar
  2. 2.
    Byron, F.W., Fuller, R.W.: Mathematics of Classical and Quantum Physics. Dover, New York (1992)zbMATHGoogle Scholar
  3. 3.
    Richtmyer, R.D., Beiglböck, W.: Principles of Advanced Mathematical Physics, vol. 1. Springer, New York (1981)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ducastelle, F., Cyrot-Lackmann, F.: Moments developments and their application to the electronic charge distribution of d bands. J. Phys. Chem. Solids 31, 1295–1306 (1970)CrossRefGoogle Scholar
  5. 5.
    Turek, I.: A maximum-entropy approach to the density of states within the recursion method. J. Phys. C 21, 3251 (1988)CrossRefGoogle Scholar
  6. 6.
    Drabold, D.A., Sankey, O.F.: Maximum entropy approach for linear scaling in the electronic structure problem. Phys. Rev. Lett. 70, 3631–3634 (1993)CrossRefGoogle Scholar
  7. 7.
    Wheeler, J.C., Blumstein, C.: Modified moments for harmonic solids. Phys. Rev. B 6, 4380–4382 (1972)CrossRefGoogle Scholar
  8. 8.
    Silver, R.N., Röder, H.: Densities of states of mega-dimensional Hamiltonian matrices. Int. J. Mod. Phys. C 5, 735–753 (1994)CrossRefGoogle Scholar
  9. 9.
    Wang, L.-W.: Calculating the density of states and optical-absorption spectra of large quantum systems by the plane-wave moments method. Phys. Rev. B 49, 10154 (1994)CrossRefGoogle Scholar
  10. 10.
    Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod. Phys. 78, 275–306 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Covaci, L., Peeters, F.M., Berciu, M.: Efficient numerical approach to inhomogeneous superconductivity: the Chebyshev-Bogoliubov–de Gennes method. Phys. Rev. Lett. 105, 167006 (2010)CrossRefGoogle Scholar
  12. 12.
    Jung, D., Czycholl, G., Kettemann, S.: Finite size scaling of the typical density of states of disordered systems within the kernel polynomial method. Int. J. Mod. Phys. Conf. Ser. 11, 108 (2012)CrossRefGoogle Scholar
  13. 13.
    Seiser, B., Pettifor, D.G., Drautz, R.: Analytic bond-order potential expansion of recursion-based methods. Phys. Rev. B 87, 094105 (2013)CrossRefGoogle Scholar
  14. 14.
    Haydock, R., Heine, V., Kelly, M.J.: Electronic structure based on the local atomic environment for tight-binding bands. J. Phys. C: Solid State Phys. 5, 2845 (1972)CrossRefGoogle Scholar
  15. 15.
    Parker, G.A., Zhu, W., Huang, Y., Hoffman, D., Kouri, D.J.: Matrix pseudo-spectroscopy: iterative calculation of matrix eigenvalues and eigenvectors of large matrices using a polynomial expansion of the Dirac delta function. Comput. Phys. Commun. 96, 27–35 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hackbusch, W.: A sparse matrix arithmetic based on \({\cal H}\)-matrices. Part I: Introduction to \({\cal H}\)-matrices. Computing 62, 89–108 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Candès, E., Demanet, L., Ying, L.: A fast butterfly algorithm for the computation of fourier integral operators. SIAM Multiscale Model. Simul. 7(4), 1727–1750 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18, 1059–1076 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lin, L., Saad, Y., Yang, C.: Approximating spectral densities of large matrices. SIAM Rev. 58, 34 (2016)Google Scholar
  21. 21.
    Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58, 8 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Parlett, B.N.: The Symmetric Eigenvalue Problem, vol. 7. SIAM, Englewood Cliffs (1980)zbMATHGoogle Scholar
  23. 23.
    Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems. J. Comput. Appl. Math. 159, 119–128 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112–115117 (2009)CrossRefGoogle Scholar
  25. 25.
    Schofield, G., Chelikowsky, J.R., Saad, Y.: A spectrum slicing method for the Kohn–Sham problem. Comput. Phys. Commun. 183, 497–505 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fang, H.-R., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34, A2220–A2246 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Aktulga, H.M., Lin, L., Haine, C., Ng, E.G., Yang, C.: Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method. Parallel Comput. 40, 195–212 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67–87 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)zbMATHGoogle Scholar
  30. 30.
    Liberty, E., Woolfe, F., Martinsson, P., Rokhlin, V., Tygert, M.: Randomized algorithms for the low-rank approximation of matrices. Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of matrices. Appl. Comput. Harmon. Anal. 25(3), 335–366 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1 (2011)MathSciNetGoogle Scholar
  34. 34.
    Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Computational Research DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations