Abstract
As model problem we consider the prototype for flow and transport of a concentration in porous media in an interior domain and couple it with a diffusion process in the corresponding unbounded exterior domain. To solve the problem we develop a new non-symmetric coupling between the vertex-centered finite volume and boundary element method. This discretization provides naturally conservation of local fluxes and with an upwind option also stability in the convection dominated case. We aim to provide a first rigorous analysis of the system for different model parameters; stability, convergence, and a priori estimates. This includes the use of an implicit stabilization, known from the finite element and boundary element method coupling. Some numerical experiments conclude the work and confirm the theoretical results.
This is a preview of subscription content, access via your institution.







References
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J.M., Praetorius, D.: Classical FEM–BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput. Mech. 51(4), 399–419 (2013)
Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987)
Brezzi, F., Johnson, C.: On the coupling of boundary integral and finite element methods. Calcolo 16(2), 189–201 (1979)
Cai, Z.: On the finite volume element method. Numer. Math. 58(7), 713–735 (1991)
Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a new approach. M2AN. Math. Model. Numer. Anal. 36(2), 307–324 (2002)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Boundary Elements IX, vol. 1 (Stuttgart, 1987), pp. 411–420. Comput. Mech., Southampton (1987)
Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)
Costabel, M., Stephan, E.P.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106(2), 367–413 (1985)
Erath, C.: Coupling of the Finite Volume Method and the Boundary Element Method—Theory, Analysis, and Numerics. Ph.D. thesis, University of Ulm (2010)
Erath, C.: Coupling of the finite volume element method and the boundary element method: an a priori convergence result. SIAM J. Numer. Anal. 50(2), 574–594 (2012)
Erath, C.: A new conservative numerical scheme for flow problems on unstructured grids and unbounded domains. J. Comput. Phys. 245, 476–492 (2013)
Erath, C.: A posteriori error estimates and adaptive mesh refinement for the coupling of the finite volume method and the boundary element method. SIAM J. Numer. Anal. 51(3), 1777–1804 (2013)
Erath, C., Praetorius, D.: Adaptive vertex-centered finite volume methods with convergence rates. SIAM J. Numer. Anal. arXiv:1508.06155v2 (2016, preprint)
Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002)
Feischl, M., Führer, T., Karkulik, M., Praetorius, D.: Stability of symmetric and nonsymmetric FEM–BEM couplings for nonlinear elasticity problems. Numer. Math. 130(2), 199–223 (2015)
Gatica, G.N., Hsiao, G.C., Sayas, F.-J.: Relaxing the hypotheses of Bielak-MacCamy’s BEM-FEM coupling. Numer. Math. 120(3), 465–487 (2012)
Hackbusch, W.: On first and second order box schemes. Computing 41(4), 277–296 (1989)
Heuer, N., Sayas, F.-J.: Analysis of a non-symmetric coupling of interior penalty DG and BEM. Math. Comput. 84(292), 581–598 (2015)
Johnson, C., Nédélec, J.C.: On the coupling of boundary integral and finite element methods. Math. Comput. 35(152), 1063–1079 (1980)
McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)
Of, G., Steinbach, O.: Is the one-equation coupling of finite and boundary element methods always stable? Z. Angew. Math. Mech. 93(6–7), 476–484 (2013)
Of, G., Steinbach, O.: On the ellipticity of coupled finite element and one-equation boundary element methods for boundary value problems. Numer. Math. 127(3), 567–593 (2014)
Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations, vol. 24. Springer, Berlin (1996)
Sayas, F.-J.: The validity of Johnson–Nédélec’s BEM–FEM coupling on polygonal interfaces. SIAM J. Numer. Anal. 47(5), 3451–3463 (2009)
Sayas, F.-J.: The validity of Johnson–Nédélec’s BEM–FEM coupling on polygonal interfaces. SIAM Rev. 55(1), 131–146 (2013)
Steinbach, O.: A note on the stable one-equation coupling of finite and boundary elements. SIAM J. Numer. Anal. 49(4), 1521–1531 (2011)
Steinbach, O.: On the stability of the non-symmetric BEM/FEM coupling in linear elasticity. Comput. Mech. 51(4), 421–430 (2013)
Steinbach, O., Wendland, W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262(2), 733–748 (2001)
Acknowledgments
F.-J. Sayas was partially supported by NSF Grant DMS 1216356.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Erath, C., Of, G. & Sayas, FJ. A non-symmetric coupling of the finite volume method and the boundary element method. Numer. Math. 135, 895–922 (2017). https://doi.org/10.1007/s00211-016-0820-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-016-0820-3
Mathematics Subject Classification
- 65N08
- 65N38
- 65N12
- 65N15