Skip to main content
Log in

Error analysis of implicit Euler methods for quasilinear hyperbolic evolution equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we study the convergence of the semi-implicit and the implicit Euler methods for the time integration of abstract, quasilinear hyperbolic evolution equations. The analytical framework considered here includes certain quasilinear Maxwell’s and wave equations as special cases. Our analysis shows that the Euler approximations are well-posed and convergent of order one. The techniques will be the basis for the future investigation of higher order time integration methods and full discretizations of certain quasilinear hyperbolic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G., Crouzeix, M.: Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73(246), 613–635 (2004, electronic)

  2. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit-explicit multistep methods for quasilinear parabolic equations. Numerische Mathematik 82(4), 521–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Busch, K., von Freymann, G., Linden, S., Mingaleev, S.F., Tkeshelashvili, L., Wegener, M.: Periodic nanostructures for photonics. Physics Reports 444(3–6), 101–202 (2007)

    Article  Google Scholar 

  4. Crandall, M.G., Souganidis, P.E.: Convergence of difference approximations of quasilinear evolution equations. Nonlinear Analysis 10(5), 425–445 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dörfler, W., Gerner, H., Schnaubelt, R.: Local wellposedness of a quasilinear wave equation. Appl. Anal. (2015). doi:10.1080/00036811.2015.1089236

  6. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt

  7. González, C., Ostermann, A., Palencia, C., Thalhammer, M.: Backward Euler discretization of fully nonlinear parabolic problems. Math. Comput. 71(237), 125–145 (2002, electronic)

  8. Hochbruck, M., Pažur, T.: Implicit Runge-Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations. SIAM J. Numer. Anal. 53(1), 485–507 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hochbruck, M., Sturm, A.: Error analysis of a second order locally implicit method for linear Maxwell’s equations. CRC 1173-Preprint 2015/1, Karlsruhe Institute of Technology (2015)

  10. Kanda, S.: Convergence of difference approximations and nonlinear semigroups. Proc. Am. Math. Soc. 108(3), 741–748 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58(3), 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Mathematics, vol. 448, pp. 25–70. Springer, Berlin (1975)

  13. Kato, T.: Linear and quasi-linear equations of evolution of hyperbolic type. In: Hyperbolicity, C.I.M.E. Summer Sch., vol. 72, pp. 125–191. Springer, Heidelberg (2011)

  14. Kobayashi, Y.: Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups. J. Math. Soc. Japan 27(4), 640–665 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lubich, C., Ostermann, A.: Runge–Kutta approximation of quasi-linear parabolic equations. Math. Comput. 64(210), 601–628 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Müller, D.: Well-posedness for a general class of quasilinear evolution equations with applications to Maxwell’s equations. PhD thesis, Karlsruhe Institute of Technology (2014)

  17. Nakaguchi, E., Yagi, A.: Error estimates of implicit Runge-Kutta methods for quasilinear abstract equations of parabolic type in Banach spaces. Japan. J. Math. (N.S.) 25(1), 181–226 (1999)

  18. Ostermann, A., Thalhammer, M.: Convergence of Runge–Kutta methods for nonlinear parabolic equations. Appl. Numer. Math. 42(1–3), 367–380 (2002). Ninth Seminar on Numerical Solution of Differential and Differential-Algebraic Equations (Halle, 2000)

  19. Pototschnig, M., Niegemann, J., Tkeshelashvili, L., Busch, K.: Time-domain simulations of the nonlinear Maxwell equations using operator-exponential methods. IEEE Transactions on Antennas and Propagation 57(2), 475–483 (2009)

    Article  MathSciNet  Google Scholar 

  20. Takahashi, T.: Convergence of difference approximation of nonlinear evolution equations and generation of semigroups. J. Math. Soc. Japan 28(1), 96–113 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Roland Schnaubelt and Dominik Müller for helpful discussions on the well-posedness of the Euler approximations. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through RTG 1294 and CRC 1173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlis Hochbruck.

Appendix: Stability estimates

Appendix: Stability estimates

In this Appendix we sketch the Proof of Lemma 3.7.

For \(\varphi \in {}\overline{\mathcal B}_Y(R)\) we define inner product

$$\begin{aligned} ( x,y )_\varphi = ( \Lambda (\varphi ) x, y )_X. \end{aligned}$$

With \(X_\varphi \) we denote the space X endowed with this inner product. From (5a) and (8a) follows that the associated norm is uniformly equivalent to the X-norm, i.e.,

$$\begin{aligned} \lambda _X^{-1} \left\| x\right\| ^2_\varphi \le \left\| x\right\| ^2_X \le \nu \left\| x\right\| ^2_\varphi , \qquad x\in X. \end{aligned}$$
(45)

By using (5c) and (45), for \(\varphi ,\psi \in {}\overline{\mathcal B}_Y(R)\), we have

$$\begin{aligned} \left\| x\right\| ^2_\varphi&= ( \Lambda (\varphi )x,x )_X = ( \Lambda (\psi )x,x )_X + ( (\Lambda (\varphi )-\Lambda (\psi ))x,x )_X \\&\le \left\| x\right\| ^2_\psi + \ell \left\| \varphi -\psi \right\| _Y \left\| x\right\| ^2_X \le (1+\ell \nu \left\| \varphi -\psi \right\| _Y) \left\| x\right\| ^2_{\psi }. \end{aligned}$$

It follows that

$$\begin{aligned} \left\| x\right\| _\varphi \le e^{k_1 \tau } \left\| x\right\| _\psi \qquad \text {for} \qquad \left\| \varphi -\psi \right\| _Y\le \gamma \tau , \end{aligned}$$
(46)

where \(k_1:=k_1(\gamma )\) is defined in (9a).

For a Banach space V and real numbers \(C\ge 1\) and \(a>0\) we denote by G(VCa) the set of all infinitesimal generators of \(C_0\)-semigroups of type (Ca) on V. We show that for \(\varphi \in {}\overline{\mathcal B}_Y(R)\) there holds

$$\begin{aligned} A_\varphi \in G(X_\varphi , 1, \omega ), \end{aligned}$$
(47a)

where \(\omega \) is defined in (9c), which then implies the following bound for the resolvent

$$\begin{aligned} \left\| (I- \tau A_\varphi )^{-1}\right\| _{X_\varphi \leftarrow X_\varphi } \le (1-\tau \omega )^{-1} \quad \text {for} \quad \tau \omega < 1. \end{aligned}$$
(47b)

From \(( \Lambda (\varphi )^{-1}A x,x )_{\varphi } = 0\), Assumption 2.2(b), the fact that A is a closed operator in X (since it is skew-adjoint) and the norm equivalence (45) we can conclude by using the Lumer–Phillips theorem, cf. [6, Theorem II.3.15], that \(\Lambda (\varphi )^{-1}A\) generates a contraction semigroup on \(X_\varphi \). Further on, \(\Lambda (\varphi )^{-1} Q(\varphi )-\omega I\) is a bounded operator on \(X_\varphi \) and

$$\begin{aligned} ( (\Lambda (\varphi )^{-1} Q(\varphi )-\omega I)x,x )_\varphi \le \mu _X \left\| x\right\| ^2_X - \omega \left\| x\right\| ^2_\varphi \le (\mu _X \nu -\omega ) \left\| x\right\| ^2_{\varphi }=0, \end{aligned}$$

i.e., \(\Lambda (\varphi )^{-1} Q(\varphi )-\omega I\) is dissipative in \(( \cdot ,\cdot )_\varphi \). Therefore, by the perturbation result [6, Theorem III.2.7], we have that \(A_\varphi -\omega I\) generates a contraction semigroup on \(X_\varphi \), i.e. \(A_\varphi -\omega I \in G(X_\varphi , 1, 0)\). (47) now follows by the bounded perturbation theorem (cf. [6, Theorem III.1.3]).

We proceed as follows by using (45), (46) and (47) to obtain the X-norm estimate. For \(\tau \omega <1\) there holds

$$\begin{aligned}&\left\| (I-\tau A_{\varphi _k})^{-1} \cdots (I-\tau A_{\varphi _j})^{-1} u\right\| _X \\&\quad \le \nu ^{1/2} \left\| (I-\tau A_{\varphi _k})^{-1} \cdots (I-\tau A_{\varphi _j})^{-1} u\right\| _{\varphi _k} \\&\quad \le \nu ^{1/2} (1 - \tau \omega )^{-1}\left\| (I-\tau A_{\varphi _{k-1}})^{-1} \cdots (I-\tau A_{\varphi _j})^{-1} u\right\| _{\varphi _k} \\&\quad \le \nu ^{1/2} (1 - \tau \omega )^{-1} e^{k_1 \tau } \left\| (I-\tau A_{\varphi _{k-1}})^{-1} \cdots (I-\tau A_{\varphi _j})^{-1} u\right\| _{\varphi _{k-1}}\\&\quad \le \cdots \le \nu ^{1/2} (1-\tau \omega )^{-(k-j+1)} e^{k_1 (k-j)\tau } \left\| u\right\| _{\varphi _j}\\&\quad \le k_0 (1-\tau \omega )^{-(k-j+1)} e^{k_1 (k-j)\tau } \left\| u\right\| _X. \end{aligned}$$

To get the Z-norm estimate we use the operator \(A_{\varphi }^S = A_\varphi + B(\varphi )\) defined in (7a). For \(\varphi \in {}\overline{\mathcal B}_Y(R)\cap {}\overline{\mathcal B}_Z(r)\), by (7b) and (45), we obtain

$$\begin{aligned} \left\| B(\varphi ) x\right\| _\varphi \le \lambda _X^{1/2} \left\| B(\varphi ) x\right\| _X \le \lambda _X^{1/2} \beta \left\| x\right\| _X \le k_0 \beta \left\| x\right\| _\varphi , \end{aligned}$$

i.e., \(\left\| B(\varphi )\right\| _{X_\varphi \leftarrow X_\varphi } \le k_0 \beta \). Applying the bounded perturbation theorem again gives that for \(\varphi \in {}\overline{\mathcal B}_Y(R)\cap {}\overline{\mathcal B}_Z(r)\) it holds

$$\begin{aligned} A_{\varphi }^S \in G(X_\varphi , 1, \widetilde{\omega }) \end{aligned}$$

where \(\widetilde{\omega }\) is defined in (9c). For \(\tau \widetilde{\omega }<1\) we can write

$$\begin{aligned}&\left\| (I-\tau A_{\varphi _k})^{-1} \cdots (I-\tau A_{\varphi _j})^{-1} u\right\| _Z\\&\quad = \left\| S^{-1} (I-\tau A^S_{\varphi _k})^{-1} \cdots (I-\tau A^S_{\varphi _j})^{-1} S u\right\| _Z \\&\quad \le \left\| S^{-1}\right\| _{Z \leftarrow X} \left\| (I-\tau A^S_{\varphi _k})^{-1} \cdots (I-\tau A^S_{\varphi _j})^{-1} S u\right\| _X \end{aligned}$$

and proceed as above. This yields the bound in the Z-norm. Since Y is an exact interpolation space between Z and X, the second inequality follows immediately.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochbruck, M., Pažur, T. Error analysis of implicit Euler methods for quasilinear hyperbolic evolution equations. Numer. Math. 135, 547–569 (2017). https://doi.org/10.1007/s00211-016-0810-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0810-5

Mathematics Subject Classification

Navigation