Numerische Mathematik

, Volume 135, Issue 1, pp 217–263 | Cite as

Stabilized mixed hp-BEM for frictional contact problems in linear elasticity

  • Lothar Banz
  • Heiko Gimperlein
  • Abderrahman Issaoui
  • Ernst P. Stephan
Article

Abstract

We analyze stabilized mixed hp-boundary element methods for frictional contact problems for the Lamé equation. The stabilization technique circumvents the discrete inf-sup condition for the mixed problem and thus allows us to use the same mesh and polynomial degree for the primal and dual variables. We prove a priori convergence rates in the case of Tresca friction, using Gauss-Legendre-Lagrange polynomials as test and trial functions for the Lagrange multiplier. Additionally, a residual based a posteriori error estimate for a more general class of discretizations is derived. It in particular applies to discretizations based on Bernstein polynomials for the discrete Lagrange multiplier, which we also analyze. The discretization and the a posteriori error estimate are extended to the case of Coulomb friction. Several numerical experiments underline our theoretical results, demonstrate the behavior of the method and its insensitivity to the scaling and perturbations of the stabilization term.

Mathematics Subject Classification

65N38 65N12 74M10 

References

  1. 1.
    Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J.M., Praetorius, D.: Local inverse estimates for non-local boundary integral operators (2015). arxiv:1504.04394 (preprint)
  2. 2.
    Aurada, M., Feischl, M., Praetorius, D.: Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems, M2AN Math. Model. Numer. Anal. 46, 1147–1173 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Banz, L., Stephan, E.P.: On \(hp\)-adaptive BEM for frictional contact problems in linear elasticity. Comput. Math. Appl. 69, 559–581 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barbosa, H., Hughes, T.: The finite element method with the Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition. Comput. Methods Appl. Mech. Eng. 85, 109–128 (1991)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Barbosa, H., Hughes, T.: Circumventing the Babuška-Brezzi condition in mixed finite element approximations of elliptic variational inequalities. Comput. Methods Appl. Mech. Eng. 97, 193–210 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bernardi, C., Maday, Y.: Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43, 53–80 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Carstensen, C.: A posteriori error estimate for the symmetric coupling of finite elements and boundary elements. Computing 57, 301–322 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Carstensen, C., Stephan, E.: Adaptive coupling of boundary elements and finite elements. Modélisation mathématique et analyse numérique 29, 779–817 (1995)MathSciNetMATHGoogle Scholar
  9. 9.
    Chernov, A.: Nonconforming boundary elements and finite elements for interface and contact problems with friction—hp-version for mortar, penalty and Nitsche’s methods, Ph.D. thesis, Universität Hannover 2006Google Scholar
  10. 10.
    Chernov, A., Maischak, M., Stephan, E.P.: hp-mortar boundary element method for two-body contact problems with friction. Math. Methods Appl. Sci. 31, 2029–2054 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Costabel, M., Stephan, E.P.: Integral equations for transmission problems in linear elasticity. J. Integral Equations Appl. 2, 211–223 (1990)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Georgoulis, E.: Inverse-type estimates on \(hp\)-finite element spaces and applications. Math. Comput. 77, 201–219 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Glowinski, R.: Numerical methods for nonlinear variational problems (1984)Google Scholar
  15. 15.
    Gwinner, J.: hp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gwinner, J., Stephan, E.P.: A boundary element procedure for contact problems in plane linear elastostatics. Modélisation mathématique et analyse numérique 27, 457–480 (1993)MathSciNetMATHGoogle Scholar
  17. 17.
    Han, H.D.: A direct boundary element method for Signorini problems. Math. Comp. 55, 115–128 (1990)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hild, P., Lleras, V.: Residual error estimators for Coulomb friction. SIAM J. Numer. Anal. 47, 3550–3583 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hild, P., Renard, Y.: An error estimate for the Signorini problem with Coulomb friction approximated by finite elements. SIAM J. Numer. Anal. 45, 2012–2031 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hild, P., Renard, Y.: A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115, 101–129 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hlavácek, I., Haslinger, J., Necas, J., Lovísek, J.: Solution of variational inequalities in mechanics, applied mathematical science, vol. 66. Springer, New York (1988)CrossRefMATHGoogle Scholar
  22. 22.
    Houston, P., Süli, E.: A note on the design of hp-adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 194, 229–243 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hüeber, S., Wohlmuth, B.: Equilibration techniques for solving contact problems with Coulomb friction. Comput. Methods Appl. Mech. Eng. 205, 29–45 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kikuchi, N., Oden, J.: Contact problems in elasticity: a study of variational inequalities and finite element methods, vol. 8. Society for Industrial Mathematics (1988)Google Scholar
  25. 25.
    Krebs, A., Stephan, E.: A p-version finite element method for nonlinear elliptic variational inequalities in 2D. Numer. Math. 105, 457–480 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Maischak, M.: The analytical computation of the Galerkin elements for the Laplace, Lamé and Helmholtz equation in 2D-BEM. Institut für Angewandte Mathematik, Universität Hannover, Hannover (1999) (preprint)Google Scholar
  27. 27.
    Maischak, M., Stephan, E.: Adaptive hp-versions of BEM for Signorini problems. Appl. Numer. Math. 54, 425–449 (2005)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Melenk, J., Wohlmuth, B.: On residual-based a posteriori error estimation in hp-FEM. Adv. Comput. Math. 15, 311–331 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Rjasanow, S., Steinbach, O.: The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering, vol. 152. Springer, New York (2007)Google Scholar
  30. 30.
    Schröder, A.: Mixed FEM of higher-order for a frictional contact problem. PAMM 11, 7–10 (2011a)CrossRefGoogle Scholar
  31. 31.
    Schröder, A.: Mixed finite element methods of higher-order for model contact problems. SINUM J. Numer. Anal. 49, 2323–2339 (2011b)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Schröder, A.: A posteriori error estimates of higher-order finite elements for frictional contact problems. Comput. Methods Appl. Mech. Eng. 249, 151–157 (2012)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Steinbach, O.: Numerical approximation methods for elliptic boundary value problems: finite and boundary elements. Springer Science & Business Media, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lothar Banz
    • 1
  • Heiko Gimperlein
    • 2
    • 3
  • Abderrahman Issaoui
    • 4
  • Ernst P. Stephan
    • 4
  1. 1.Department of MathematicsUniversity of SalzburgSalzburgAustria
  2. 2.Maxwell Institute for Mathematical Sciences and Department of MathematicsHeriot-Watt UniversityEdinburghUK
  3. 3.Institute for MathematicsUniversity of PaderbornPaderbornGermany
  4. 4.Institute of Applied MathematicsLeibniz University HannoverHannoverGermany

Personalised recommendations