Abstract
We present a comprehensive error analysis of two prototypical atomistic-to-continuum coupling methods of blending type: the energy-based and the force-based quasicontinuum methods. Our results are valid in two and three dimensions, for finite range many-body interactions (e.g., EAM type), and in the presence of lattice defects (we consider point defects and dislocations). The two key ingredients in the analysis are (1) new force and energy consistency error estimates; and (2) a new technique for proving energy norm stability of a/c couplings that requires only the assumption that the exact atomistic solution is a stable equilibrium.
Similar content being viewed by others
References
Miller, R., Tadmor, E.: A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17 (2009)
Li, X.H., Luskin, M., Ortner, C., Shapeev, A.V.: Theory-based benchmarking of blended force-based quasicontinuum method. Comput. Methods Appl. Mech. Eng. 268, 763–781 (2014)
Luskin, M., Ortner, C., Van Koten, B.: Formulation and optimization of the energy-based blended quasicontinuum method. Comput. Methods Appl. Mech. Eng. 253 (2013)
Van Koten, B., Luskin, M.: Analysis of energy-based blended quasi-continuum approximations. SIAM J. Numer. Anal. 49(5), 2182–2209 (2011)
Badia, S., Parks, M.L., Bochev, P.B., Gunzburger, M., Lehoucq, R.B.: On atomistic-to-continuum coupling by blending. SIAM J. Multiscale Model. Simul. 7(1), 381–406 (2008)
Bauman, P.T., Ben Dhia, H., Elkhodja, N., Oden, J.T., Prudhomme, S.: On the application of the Arlequin method to the coupling of particle and continuum models. Comput. Mech. 42(4), 511–530 (2008)
Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193(17-20), 1645–1669 (2004)
Li, X.H., Luskin, M., Ortner, C.: Positive-definiteness of the blended force-based quasicontinuum method. SIAM J. Multiscale Model. Simul. 10, 1023–1045 (2012)
Lu, J., Ming, P.: Convergence of a force-based hybrid method in three dimensions. Commun. Pure Appl. Math. 66(1), 83–108 (2013)
Belytschko, T., Xiao, S.P.: Coupling methods for continuum model with molecular model. Int. J. Multiscale Comp. Eng. 1, 115–126 (2003)
Fish, J., Nuggehally, M.A., Shephard, M.S., Picu, C.R., Badia, S., Parks, M.L., Gunzburger, M.: Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comput. Methods Appl. Mech. Eng. 196(45–48), 4548–4560 (2007)
Liu, W.K., Park, H., Qian, D., Karpov, W.G., Kadowaki, H., Wagner, G.J.: Bridging scale methods for nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 195, 1407–1421 (2006)
Prudhomme, S., Dhia, H.B., Bauman, P.T., Elkhodja, N., Oden, J.T.: Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method. Comput. Methods Appl. Mech. Eng. 197(41–42), 3399–3409 (2008)
Seleson, P., Gunzburger, M.: Bridging methods for atomistic-to-continuum coupling and their implementation. Commun. Comp. Phys. 7, 831–876 (2010)
Luskin, M., Ortner, C.: Atomistic-to-continuum-coupling. Acta Numerica (2013)
Ortner, C.: The role of the patch test in 2D atomistic-to-continuum coupling methods. ESAIM Math. Model. Numer. Anal. 46 (2012)
Ortner, C., Shapeev, A.V.: Analysis of an energy-based atomistic/continuum coupling approximation of a vacancy in the 2D triangular lattice. Math. Comput. 82 (2013)
Shapeev, A.V.: Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions. SIAM J. Multiscale Model. Simul. 9, 905–932 (2011)
Makridakis, C., Süli, E.: Finite element analysis of Cauchy–Born approximations to atomistic models. Arch. Ration. Mech. Anal. 207, 813–843 (2013)
Ortner, C., Theil, F.: Justification of the Cauchy–Born approximation of elastodynamics. Arch. Ration. Mech. Anal. 207 (2013)
Ortner, C., Shapeev, A., Zhang, L.: (In-)stability and stabilisation of QNL-type atomistic-to-continuum coupling methods. SIAM J. Multiscale Model. Simul. 12, 1258–1293 (2014)
Ortner, C., Shapeev, A.: Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods. arXiv:1204.3705 (2012)
Beirao da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-refinement in isogeometric analysis. Num. Math. 118(2), 271–305 (2011)
Schwab, C.: p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)
Ehrlacher, V., Ortner, C., Shapeev, A.V.: Analysis of boundary conditions for crystal defect atomistic simulations. arXiv:1306.5334v2 (2013)
Ehrlacher, V., Ortner, C., Shapeev, A.V.: Analysis of boundary conditions for crystal defect atomistic simulations. arXiv:1306.5334v1 (2013)
Hudson, T., Ortner, C.: Existence and stability of a screw dislocation under anti-plane deformation. Arch. Ration. Mech. Anal. 213(3), 887–929 (2014)
Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger Publishing Company, Malabar (1982)
Hudson, T., Ortner, C.: On the stability of Bravais lattices and their Cauchy–Born approximations. ESAIM Math. Model. Numer. Anal. 46, 81–110 (2012)
Dobson, M., Luskin, M., Ortner, C.: Sharp stability estimates for force-based quasicontinuum methods. SIAM J. Multiscale Model. Simul. 8, 782–802 (2010)
Dobson, M., Luskin, M., Ortner, C.: Stability, instability and error of the force-based quasicontinuum approximation. Arch. Ration. Mech. Anal. 197, 179–202 (2010)
Dobson, M., Ortner, C., Shapeev, A.V.: The spectrum of the force-based quasicontinuum operator for a homogeneous periodic chain. SIAM J. Multiscale Model. Simul. 10(3), 744–765 (2012)
Lu, J., Ming, P.: Stability of a force-based hybrid method in three dimension with sharp interface (2012)
Olson, D., Bochev, P., Luskin, M., Shapeev, A.V.: Development of an optimization-based atomistic-to-continuum coupling method. Large-Scale Scientific Computing, Springer, Heidelberg, pp 33–44 (2014)
Hardy, R.J.: Formulas for determining local properties in molecular dynamics simulations: shock waves. J. Chem. Phys. 76(622), 628 (1982)
Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Wiley, New York (1996)
Verfürth, Rüdiger: Error estimates for some quasi-interpolation operators. M2AN Math. Model. Numer. Anal. 33, 695–713 (1999)
Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002) (Reprint of the 1978 original)
Li, X.H., Ortner, C., Shapeev, A., Van Koten, B.: Analysis of blended atomistic/continuum hybrid methods. arXiv:1404.4878 (2014)
Carstensen, C.: Quasi-interpolation and a posteriori error analysis in n+nnite element methods, M2AN. Math Model. Numer. Anal. 33, 1187–1202 (1999)
Glaeser, G.: Racine carrée d’une fonction différentiable. Annales de l’institut Fourier 13(2), 203–210 (1963)
Author information
Authors and Affiliations
Corresponding author
Additional information
XHL was supported by an AMS-Simons Travel Grant. CO’s work was supported by EPSRC Grant EP/H003096, ERC Starting Grant 335120 and by the Leverhulme Trust through a Philip Leverhulme Prize. AVS was supported by the AFOSR Award FA9550–12–1–0187.
Rights and permissions
About this article
Cite this article
Li, X.H., Ortner, C., Shapeev, A.V. et al. Analysis of blended atomistic/continuum hybrid methods. Numer. Math. 134, 275–326 (2016). https://doi.org/10.1007/s00211-015-0772-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-015-0772-z