Skip to main content

Advertisement

Log in

Analysis of blended atomistic/continuum hybrid methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a comprehensive error analysis of two prototypical atomistic-to-continuum coupling methods of blending type: the energy-based and the force-based quasicontinuum methods. Our results are valid in two and three dimensions, for finite range many-body interactions (e.g., EAM type), and in the presence of lattice defects (we consider point defects and dislocations). The two key ingredients in the analysis are (1) new force and energy consistency error estimates; and (2) a new technique for proving energy norm stability of a/c couplings that requires only the assumption that the exact atomistic solution is a stable equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miller, R., Tadmor, E.: A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17 (2009)

  2. Li, X.H., Luskin, M., Ortner, C., Shapeev, A.V.: Theory-based benchmarking of blended force-based quasicontinuum method. Comput. Methods Appl. Mech. Eng. 268, 763–781 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Luskin, M., Ortner, C., Van Koten, B.: Formulation and optimization of the energy-based blended quasicontinuum method. Comput. Methods Appl. Mech. Eng. 253 (2013)

  4. Van Koten, B., Luskin, M.: Analysis of energy-based blended quasi-continuum approximations. SIAM J. Numer. Anal. 49(5), 2182–2209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badia, S., Parks, M.L., Bochev, P.B., Gunzburger, M., Lehoucq, R.B.: On atomistic-to-continuum coupling by blending. SIAM J. Multiscale Model. Simul. 7(1), 381–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauman, P.T., Ben Dhia, H., Elkhodja, N., Oden, J.T., Prudhomme, S.: On the application of the Arlequin method to the coupling of particle and continuum models. Comput. Mech. 42(4), 511–530 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193(17-20), 1645–1669 (2004)

  8. Li, X.H., Luskin, M., Ortner, C.: Positive-definiteness of the blended force-based quasicontinuum method. SIAM J. Multiscale Model. Simul. 10, 1023–1045 (2012)

  9. Lu, J., Ming, P.: Convergence of a force-based hybrid method in three dimensions. Commun. Pure Appl. Math. 66(1), 83–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belytschko, T., Xiao, S.P.: Coupling methods for continuum model with molecular model. Int. J. Multiscale Comp. Eng. 1, 115–126 (2003)

    Article  Google Scholar 

  11. Fish, J., Nuggehally, M.A., Shephard, M.S., Picu, C.R., Badia, S., Parks, M.L., Gunzburger, M.: Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comput. Methods Appl. Mech. Eng. 196(45–48), 4548–4560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, W.K., Park, H., Qian, D., Karpov, W.G., Kadowaki, H., Wagner, G.J.: Bridging scale methods for nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 195, 1407–1421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Prudhomme, S., Dhia, H.B., Bauman, P.T., Elkhodja, N., Oden, J.T.: Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method. Comput. Methods Appl. Mech. Eng. 197(41–42), 3399–3409 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Seleson, P., Gunzburger, M.: Bridging methods for atomistic-to-continuum coupling and their implementation. Commun. Comp. Phys. 7, 831–876 (2010)

    MathSciNet  Google Scholar 

  15. Luskin, M., Ortner, C.: Atomistic-to-continuum-coupling. Acta Numerica (2013)

  16. Ortner, C.: The role of the patch test in 2D atomistic-to-continuum coupling methods. ESAIM Math. Model. Numer. Anal. 46 (2012)

  17. Ortner, C., Shapeev, A.V.: Analysis of an energy-based atomistic/continuum coupling approximation of a vacancy in the 2D triangular lattice. Math. Comput. 82 (2013)

  18. Shapeev, A.V.: Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions. SIAM J. Multiscale Model. Simul. 9, 905–932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Makridakis, C., Süli, E.: Finite element analysis of Cauchy–Born approximations to atomistic models. Arch. Ration. Mech. Anal. 207, 813–843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ortner, C., Theil, F.: Justification of the Cauchy–Born approximation of elastodynamics. Arch. Ration. Mech. Anal. 207 (2013)

  21. Ortner, C., Shapeev, A., Zhang, L.: (In-)stability and stabilisation of QNL-type atomistic-to-continuum coupling methods. SIAM J. Multiscale Model. Simul. 12, 1258–1293 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ortner, C., Shapeev, A.: Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods. arXiv:1204.3705 (2012)

  23. Beirao da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-refinement in isogeometric analysis. Num. Math. 118(2), 271–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schwab, C.: p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  25. Ehrlacher, V., Ortner, C., Shapeev, A.V.: Analysis of boundary conditions for crystal defect atomistic simulations. arXiv:1306.5334v2 (2013)

  26. Ehrlacher, V., Ortner, C., Shapeev, A.V.: Analysis of boundary conditions for crystal defect atomistic simulations. arXiv:1306.5334v1 (2013)

  27. Hudson, T., Ortner, C.: Existence and stability of a screw dislocation under anti-plane deformation. Arch. Ration. Mech. Anal. 213(3), 887–929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger Publishing Company, Malabar (1982)

    Google Scholar 

  29. Hudson, T., Ortner, C.: On the stability of Bravais lattices and their Cauchy–Born approximations. ESAIM Math. Model. Numer. Anal. 46, 81–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dobson, M., Luskin, M., Ortner, C.: Sharp stability estimates for force-based quasicontinuum methods. SIAM J. Multiscale Model. Simul. 8, 782–802 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dobson, M., Luskin, M., Ortner, C.: Stability, instability and error of the force-based quasicontinuum approximation. Arch. Ration. Mech. Anal. 197, 179–202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dobson, M., Ortner, C., Shapeev, A.V.: The spectrum of the force-based quasicontinuum operator for a homogeneous periodic chain. SIAM J. Multiscale Model. Simul. 10(3), 744–765 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, J., Ming, P.: Stability of a force-based hybrid method in three dimension with sharp interface (2012)

  34. Olson, D., Bochev, P., Luskin, M., Shapeev, A.V.: Development of an optimization-based atomistic-to-continuum coupling method. Large-Scale Scientific Computing, Springer, Heidelberg, pp 33–44 (2014)

  35. Hardy, R.J.: Formulas for determining local properties in molecular dynamics simulations: shock waves. J. Chem. Phys. 76(622), 628 (1982)

  36. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Wiley, New York (1996)

    MATH  Google Scholar 

  37. Verfürth, Rüdiger: Error estimates for some quasi-interpolation operators. M2AN Math. Model. Numer. Anal. 33, 695–713 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002) (Reprint of the 1978 original)

  39. Li, X.H., Ortner, C., Shapeev, A., Van Koten, B.: Analysis of blended atomistic/continuum hybrid methods. arXiv:1404.4878 (2014)

  40. Carstensen, C.: Quasi-interpolation and a posteriori error analysis in n+nnite element methods, M2AN. Math Model. Numer. Anal. 33, 1187–1202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Glaeser, G.: Racine carrée d’une fonction différentiable. Annales de l’institut Fourier 13(2), 203–210 (1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Shapeev.

Additional information

XHL was supported by an AMS-Simons Travel Grant. CO’s work was supported by EPSRC Grant EP/H003096, ERC Starting Grant 335120 and by the Leverhulme Trust through a Philip Leverhulme Prize. AVS was supported by the AFOSR Award FA9550–12–1–0187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.H., Ortner, C., Shapeev, A.V. et al. Analysis of blended atomistic/continuum hybrid methods. Numer. Math. 134, 275–326 (2016). https://doi.org/10.1007/s00211-015-0772-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0772-z

Keywords

Navigation