Skip to main content
Log in

Generalized convolution quadrature based on Runge-Kutta methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we develop the Runge-Kutta generalized convolution quadrature with variable time stepping for the numerical solution of convolution equations for time and space-time problems and present the corresponding stability and convergence analysis. For this purpose, some new theoretical tools such as tensorial divided differences, summation by parts with Runge-Kutta differences and a calculus for Runge-Kutta discretizations of generalized convolution operators such as an associativity property will be developed in this paper. Numerical examples will illustrate the stable and efficient behavior of the resulting discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The generic constant C in the following estimates will depend on but not explicitly on \(\sigma \). Hence, if is independent of \(\sigma \) so is the constant C.

  2. Note that the notation \(\mathbf {v}\otimes {\displaystyle \bigotimes \nolimits _{j=1}^{k}} \mathbf {w}^{\left( j\right) }\) sometimes appears also for \(k\le 0\). In this case we set \(\mathbf {v}\otimes {\displaystyle \bigotimes \nolimits _{j=1}^{k}} \mathbf {w}^{\left( j\right) }:=\mathbf {v}\) if \(k\le 0\).

  3. We prefer the notation instead of \(\left[ \mathbf {C}^{\left( 1\right) },\mathbf {C}^{\left( 2\right) },\ldots ,\mathbf {C}^{\left( n\right) }\right] f\) because of brevity.

  4. By \(\mathbf {V}^{\intercal }\) we denote the transposed of the matrix \(\mathbf {V}\) (without complex conjugation) and by \(\mathbf {V}^{-\intercal }=\left( \mathbf {V}^{-1}\right) ^{\intercal }\).

  5. To derive the third equality, we have inserted

    $$\begin{aligned} 0= & {} -\sum \nolimits _{j=2}^{n}\left[ \mathbf {D}^{\left( j\right) },\ldots ,\mathbf {D} ^{\left( n\right) }\right] f\circ \left( \left[ \mathbf {D}^{\left( 1\right) },\ldots ,\mathbf {D}^{\left( j-1\right) }\right] g\otimes \mathbf {I}\right) \!+\!\sum \nolimits _{j=1}^{n-1}\left( \mathbf {I}\otimes \left[ \mathbf {D}^{\left( j+1\right) },\ldots ,\mathbf {D}^{\left( n\right) }\right] f\right) \\&\circ \left[ \mathbf {D}^{\left( 1\right) } ,\ldots ,\mathbf {D}^{\left( j\right) }\right] g \end{aligned}$$

    and used (93).

References

  1. Banjai, L., Lubich, C.: An error analysis of Runge-Kutta convolution quadrature. BIT 51(3), 483–496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banjai, L., Lubich, C., Melenk, J.M.: Runge-Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119(1), 1–20 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47, 227–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Boor, C.: Divided differences. Surv. Approx. Theory 1, 46–69 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Falletta, S., Monegato, G., Scuderi, L.: A space-time BIE method for nonhomogeneous exterior wave equation problems. The Dirichlet case. IMA J. Numer. Anal. 32(1), 202–226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Greub, W.: Linear Algebra, fourth edition. Springer, New York (1975)

    MATH  Google Scholar 

  7. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  8. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Volume 14 of Springer Series in Computational Mathematics. Stiff and differential-algebraic problems, Second revised edition, paperback. Springer, Berlin (2010)

    MATH  Google Scholar 

  9. Lopez-Fernandez, M., Sauter, S.A.: Generalized convolution quadrature with variable time stepping. IMA J. Numer. Anal. 33(4), 1156–1175 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lopez-Fernandez, M., Sauter, S.A.: Fast and stable contour integration for high order divided differences via elliptic functions. Math. Comp. 84, 1291–1315 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lopez-Fernandez, M., Sauter, S.A.: Generalized convolution quadrature with variable time stepping. Part II. Appl. Numer. Math. 94, 88–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lubich, C.: Convolution quadrature and discretized operational calculus II. Numer. Math. 52, 413–425 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67(3), 365–389 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lubich, C.: Convolution quadrature revisited. BIT Numer. Math. 44, 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lubich, C., Ostermann, A.: Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comp. 60(201), 105–131 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sauter, S., Veit, A.: Retarded boundary integral equations on the sphere: exact and numerical solution. IMA J. Numer. Anal. 34(2), 675–699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Most part of the present paper was developed while the first author was affiliated at the Institute of Mathematics of the University of Zurich. The first author was also partially supported by the Spanish grants MTM2012-31298 and MTM2014-54710-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lopez-Fernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Fernandez, M., Sauter, S. Generalized convolution quadrature based on Runge-Kutta methods. Numer. Math. 133, 743–779 (2016). https://doi.org/10.1007/s00211-015-0761-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0761-2

Mathematics Subject Classification

Navigation