Skip to main content

Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems

Abstract

The state-of-the art proof of a global inf-sup condition on mixed finite element schemes does not allow for an analysis of truly indefinite, second-order linear elliptic PDEs. This paper, therefore, first analyses a nonconforming finite element discretization which converges owing to some a priori \(L^2\) error estimates even for reduced regularity on non-convex polygonal domains. An equivalence result of that nonconforming finite element scheme to the mixed finite element method (MFEM) leads to the well-posedness of the discrete solution and to a priori error estimates for the MFEM. The explicit residual-based a posteriori error analysis allows some reliable and efficient error control and motivates some adaptive discretization which improves the empirical convergence rates in three computational benchmarks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26, 1276–1290 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bahriawati, C., Carstensen, C.: Three matlab implementations of the lowest order Raviart–Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5, 333–1361 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    Book  MATH  Google Scholar 

  4. 4.

    Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65, 897–921 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  6. 6.

    Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66, 465–476 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Carstensen, C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Carstensen, C., Hu, J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Carstensen, C., Eigel, M., Löbhard, C., Hoppe, R.H.W.: A review of unified a posteriori finite element error control. Numer. Math. Theory Methods Appl. 5, 509–558 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Chen, H., Xu, X., Hoppe, R.H.W.: Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems. Numer. Math. 116, 383–419 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Chen, J., Li, L.: Convergence and domain decomposition algorithm for nonconforming and mixed methods for nonselfadjoint and indefinite problems. Comput. Methods Appl. Mech. Eng. 173, 1–20 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Ciarlet Jr, P., Huang, J., Zou, J.: Some observations on generalized saddle-point problems. SIAM J. Matrix Anal. Appl. 25, 224–236 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Douglas Jr, J., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput. 44, 39–52 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Douglas Jr, J., Roberts, J.E.: Mixed finite element methods for second order elliptic problems. Mat. Apl. Comput. 1, 91–103 (1982)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Dauge, M.: Elliptic boundary problems on corner domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

    Google Scholar 

  16. 16.

    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (1998)

    MATH  Google Scholar 

  17. 17.

    Gilberg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  18. 18.

    Mao, S., Shi, Z.: On the error bounds of nonconforming finite elements. Sci. China Math. 53, 2917–2926 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Nicaise, S.: Polygonal Interface Problems. Verlag Peter D Lang, Frankfurt am Main (1993)

    MATH  Google Scholar 

  21. 21.

    Schatz, A.H., Wang, J.: Some new error estimates for Ritz–Galerkin methods with minimal regularity assumptions. Math. Comput. 65, 19–27 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York (1996)

    MATH  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the support of National Program on Differential Equations: Theory, Computation & Applications (NPDE-TCA) vide Department of Science & Technology (DST) Project No. SR/S4/MS:639/09 during his visit to IIT Bombay. The second author acknowledges the financial support of Council of Scientific and Industrial Research (CSIR), Government of India. The authors sincerely thank the two anonymous referees for careful reviews and several remarks which improved the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amiya K. Pani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carstensen, C., Dond, A.K., Nataraj, N. et al. Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems. Numer. Math. 133, 557–597 (2016). https://doi.org/10.1007/s00211-015-0755-0

Download citation

Mathematics Subject Classification

  • 65N30
  • 65N50