Skip to main content
Log in

On a corrected Fejér quadrature formula of the second kind

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider an interpolatory quadrature formula having as nodes the zeros of the nth degree Chebyshev polynomial of the second kind, on which the Fejér formula of the second kind is based, and the additional points \(\pm \tau _{c}=\pm \cos \frac{\pi }{2(n+1)}\). The new formula is shown to have positive weights given by explicit formulae. Furthermore, we determine the precise degree of exactness, and we obtain optimal error bounds for this formula either by Peano kernel methods or by Hilbert space techniques for analytic functions and \(1\le n\le 40\). In addition, the convergence of the quadrature formula is shown not only for Riemann integrable functions on \([-1,1]\), but also for functions having monotonic singularities at \(\pm \)1. The new formula has essentially the same rate of convergence as, and it is therefore an alternative to, the well-known Clenshaw-Curtis formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brass, H., Schmeisser, G.: The definiteness of Filippi’s quadrature formulae and related problems. In: Hämmerlin, G. (ed.) Numerische Integration, ISNM 45, pp. 109–119. Birkhäuser, Basel (1979)

    Chapter  Google Scholar 

  2. Brass, H., Schmeisser, G.: Error estimates for interpolatory quadrature formulae. Numer. Math. 37, 371–386 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, San Diego (1984)

    MATH  Google Scholar 

  4. Fejér, L.: Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math. Z. 37, 287–309 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gautschi, W.: Numerical quadrature in the presence of a singularity. SIAM J. Numer. Anal. 4, 357–362 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gautschi, W.: Remainder estimates for analytic functions. In: Espelid, T.O., Genz, A. (eds.) Numerical Integration: Recent Developments, Software and Applications, pp. 133–145. Kluwer Academic Publishers, Dordrecht (1992)

    Chapter  Google Scholar 

  7. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 4th edn. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  8. Hämmerlin, G.: Fehlerabschätzung bei numerischer Integration nach Gauss. In: Brosowski, B., Martensen, E. (eds.) Methoden und Verfahren der mathematischen Physik, vol. 6, pp. 153–163. Bibliographisches Institut, Mannheim (1972)

    Google Scholar 

  9. Hasegawa, T., Sugiura, H.: Error estimate for a corrected Clenshaw-Curtis quadrature rule. Numer. Math. 130, 135–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kütz, M.: A note on error estimates for the Clenshaw-Curtis and other interpolatory quadratures. Analysis 4, 45–51 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton, FL (2002)

    Book  MATH  Google Scholar 

  12. Notaris, S.E.: Interpolatory quadrature formulae with Chebyshev abscissae of the third or fourth kind. J. Comput. Appl. Math. 81, 83–99 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Notaris, S.E.: Interpolatory quadrature formulae with Chebyshev abscissae. J. Comput. Appl. Math. 133, 507–517 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Notaris, S.E.: Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions. Math. Comp. 75, 1217–1231 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Notaris, S.E.: The error norm of quadrature formulae. Numer. Algorithms 60, 555–578 (2012)

  16. Notaris, S.E.: Product integration rules for Chebyshev weight functions with Chebyshev abscissae. J. Comput. Appl. Math. 257, 180–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios E. Notaris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notaris, S.E. On a corrected Fejér quadrature formula of the second kind. Numer. Math. 133, 279–302 (2016). https://doi.org/10.1007/s00211-015-0750-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0750-5

Mathematics Subject Classification

Navigation